This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the product of two converging sequences. Proposition 12-2.1(c) of Gleason p. 168. (Contributed by NM, 27-Dec-2005) (Proof shortened by Mario Carneiro, 1-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climadd.6 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | ||
| climadd.7 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) | ||
| climadd.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| climadd.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | ||
| climmul.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | climmul | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 4 | climadd.6 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | |
| 5 | climadd.7 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) | |
| 6 | climadd.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 7 | climadd.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | |
| 8 | climmul.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) | |
| 9 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 11 | climcl | ⊢ ( 𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ ) | |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 13 | mulcl | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 · 𝑣 ) ∈ ℂ ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) ) → ( 𝑢 · 𝑣 ) ∈ ℂ ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 16 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 17 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 18 | mulcn2 | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 · 𝑣 ) − ( 𝐴 · 𝐵 ) ) ) < 𝑥 ) ) | |
| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ℂ ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 · 𝑣 ) − ( 𝐴 · 𝐵 ) ) ) < 𝑥 ) ) |
| 20 | 1 2 10 12 14 3 5 4 19 6 7 8 | climcn2 | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐴 · 𝐵 ) ) |