This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfmul . (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmul.1 | |- ( ph -> F e. MblFn ) |
|
| mbfmul.2 | |- ( ph -> G e. MblFn ) |
||
| mbfmul.3 | |- ( ph -> F : A --> RR ) |
||
| mbfmul.4 | |- ( ph -> G : A --> RR ) |
||
| mbfmul.5 | |- ( ph -> P : NN --> dom S.1 ) |
||
| mbfmul.6 | |- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
||
| mbfmul.7 | |- ( ph -> Q : NN --> dom S.1 ) |
||
| mbfmul.8 | |- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) ) |
||
| Assertion | mbfmullem2 | |- ( ph -> ( F oF x. G ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmul.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfmul.2 | |- ( ph -> G e. MblFn ) |
|
| 3 | mbfmul.3 | |- ( ph -> F : A --> RR ) |
|
| 4 | mbfmul.4 | |- ( ph -> G : A --> RR ) |
|
| 5 | mbfmul.5 | |- ( ph -> P : NN --> dom S.1 ) |
|
| 6 | mbfmul.6 | |- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
|
| 7 | mbfmul.7 | |- ( ph -> Q : NN --> dom S.1 ) |
|
| 8 | mbfmul.8 | |- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) ) |
|
| 9 | 3 | ffnd | |- ( ph -> F Fn A ) |
| 10 | 4 | ffnd | |- ( ph -> G Fn A ) |
| 11 | 3 | fdmd | |- ( ph -> dom F = A ) |
| 12 | mbfdm | |- ( F e. MblFn -> dom F e. dom vol ) |
|
| 13 | 1 12 | syl | |- ( ph -> dom F e. dom vol ) |
| 14 | 11 13 | eqeltrrd | |- ( ph -> A e. dom vol ) |
| 15 | inidm | |- ( A i^i A ) = A |
|
| 16 | eqidd | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 17 | eqidd | |- ( ( ph /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
|
| 18 | 9 10 14 14 15 16 17 | offval | |- ( ph -> ( F oF x. G ) = ( x e. A |-> ( ( F ` x ) x. ( G ` x ) ) ) ) |
| 19 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 20 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 21 | 1zzd | |- ( ( ph /\ x e. A ) -> 1 e. ZZ ) |
|
| 22 | nnex | |- NN e. _V |
|
| 23 | 22 | mptex | |- ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. _V |
| 24 | 23 | a1i | |- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. _V ) |
| 25 | 5 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( P ` n ) e. dom S.1 ) |
| 26 | i1ff | |- ( ( P ` n ) e. dom S.1 -> ( P ` n ) : RR --> RR ) |
|
| 27 | 25 26 | syl | |- ( ( ph /\ n e. NN ) -> ( P ` n ) : RR --> RR ) |
| 28 | 27 | adantlr | |- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( P ` n ) : RR --> RR ) |
| 29 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 30 | 14 29 | syl | |- ( ph -> A C_ RR ) |
| 31 | 30 | sselda | |- ( ( ph /\ x e. A ) -> x e. RR ) |
| 32 | 31 | adantr | |- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> x e. RR ) |
| 33 | 28 32 | ffvelcdmd | |- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( ( P ` n ) ` x ) e. RR ) |
| 34 | 33 | recnd | |- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( ( P ` n ) ` x ) e. CC ) |
| 35 | 34 | fmpttd | |- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( P ` n ) ` x ) ) : NN --> CC ) |
| 36 | 35 | ffvelcdmda | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) e. CC ) |
| 37 | 7 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( Q ` n ) e. dom S.1 ) |
| 38 | i1ff | |- ( ( Q ` n ) e. dom S.1 -> ( Q ` n ) : RR --> RR ) |
|
| 39 | 37 38 | syl | |- ( ( ph /\ n e. NN ) -> ( Q ` n ) : RR --> RR ) |
| 40 | 39 | adantlr | |- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( Q ` n ) : RR --> RR ) |
| 41 | 40 32 | ffvelcdmd | |- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( ( Q ` n ) ` x ) e. RR ) |
| 42 | 41 | recnd | |- ( ( ( ph /\ x e. A ) /\ n e. NN ) -> ( ( Q ` n ) ` x ) e. CC ) |
| 43 | 42 | fmpttd | |- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( Q ` n ) ` x ) ) : NN --> CC ) |
| 44 | 43 | ffvelcdmda | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) e. CC ) |
| 45 | fveq2 | |- ( n = k -> ( P ` n ) = ( P ` k ) ) |
|
| 46 | 45 | fveq1d | |- ( n = k -> ( ( P ` n ) ` x ) = ( ( P ` k ) ` x ) ) |
| 47 | fveq2 | |- ( n = k -> ( Q ` n ) = ( Q ` k ) ) |
|
| 48 | 47 | fveq1d | |- ( n = k -> ( ( Q ` n ) ` x ) = ( ( Q ` k ) ` x ) ) |
| 49 | 46 48 | oveq12d | |- ( n = k -> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
| 50 | eqid | |- ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) = ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) |
|
| 51 | ovex | |- ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) e. _V |
|
| 52 | 49 50 51 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ` k ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
| 53 | 52 | adantl | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ` k ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
| 54 | eqid | |- ( n e. NN |-> ( ( P ` n ) ` x ) ) = ( n e. NN |-> ( ( P ` n ) ` x ) ) |
|
| 55 | fvex | |- ( ( P ` k ) ` x ) e. _V |
|
| 56 | 46 54 55 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) = ( ( P ` k ) ` x ) ) |
| 57 | eqid | |- ( n e. NN |-> ( ( Q ` n ) ` x ) ) = ( n e. NN |-> ( ( Q ` n ) ` x ) ) |
|
| 58 | fvex | |- ( ( Q ` k ) ` x ) e. _V |
|
| 59 | 48 57 58 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) = ( ( Q ` k ) ` x ) ) |
| 60 | 56 59 | oveq12d | |- ( k e. NN -> ( ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) x. ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
| 61 | 60 | adantl | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) x. ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) ) = ( ( ( P ` k ) ` x ) x. ( ( Q ` k ) ` x ) ) ) |
| 62 | 53 61 | eqtr4d | |- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ` k ) = ( ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ` k ) x. ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ` k ) ) ) |
| 63 | 19 21 6 24 8 36 44 62 | climmul | |- ( ( ph /\ x e. A ) -> ( n e. NN |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ~~> ( ( F ` x ) x. ( G ` x ) ) ) |
| 64 | 30 | adantr | |- ( ( ph /\ n e. NN ) -> A C_ RR ) |
| 65 | 64 | resmptd | |- ( ( ph /\ n e. NN ) -> ( ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) |` A ) = ( x e. A |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ) |
| 66 | 27 | ffnd | |- ( ( ph /\ n e. NN ) -> ( P ` n ) Fn RR ) |
| 67 | 39 | ffnd | |- ( ( ph /\ n e. NN ) -> ( Q ` n ) Fn RR ) |
| 68 | reex | |- RR e. _V |
|
| 69 | 68 | a1i | |- ( ( ph /\ n e. NN ) -> RR e. _V ) |
| 70 | inidm | |- ( RR i^i RR ) = RR |
|
| 71 | eqidd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( P ` n ) ` x ) = ( ( P ` n ) ` x ) ) |
|
| 72 | eqidd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( Q ` n ) ` x ) = ( ( Q ` n ) ` x ) ) |
|
| 73 | 66 67 69 69 70 71 72 | offval | |- ( ( ph /\ n e. NN ) -> ( ( P ` n ) oF x. ( Q ` n ) ) = ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) ) |
| 74 | 25 37 | i1fmul | |- ( ( ph /\ n e. NN ) -> ( ( P ` n ) oF x. ( Q ` n ) ) e. dom S.1 ) |
| 75 | i1fmbf | |- ( ( ( P ` n ) oF x. ( Q ` n ) ) e. dom S.1 -> ( ( P ` n ) oF x. ( Q ` n ) ) e. MblFn ) |
|
| 76 | 74 75 | syl | |- ( ( ph /\ n e. NN ) -> ( ( P ` n ) oF x. ( Q ` n ) ) e. MblFn ) |
| 77 | 73 76 | eqeltrrd | |- ( ( ph /\ n e. NN ) -> ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. MblFn ) |
| 78 | 14 | adantr | |- ( ( ph /\ n e. NN ) -> A e. dom vol ) |
| 79 | mbfres | |- ( ( ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. MblFn /\ A e. dom vol ) -> ( ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) |` A ) e. MblFn ) |
|
| 80 | 77 78 79 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( ( x e. RR |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) |` A ) e. MblFn ) |
| 81 | 65 80 | eqeltrrd | |- ( ( ph /\ n e. NN ) -> ( x e. A |-> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) ) e. MblFn ) |
| 82 | ovex | |- ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) e. _V |
|
| 83 | 82 | a1i | |- ( ( ph /\ ( n e. NN /\ x e. A ) ) -> ( ( ( P ` n ) ` x ) x. ( ( Q ` n ) ` x ) ) e. _V ) |
| 84 | 19 20 63 81 83 | mbflim | |- ( ph -> ( x e. A |-> ( ( F ` x ) x. ( G ` x ) ) ) e. MblFn ) |
| 85 | 18 84 | eqeltrd | |- ( ph -> ( F oF x. G ) e. MblFn ) |