This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbflim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| mbflim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| mbflim.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 ) | ||
| mbflim.5 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | ||
| mbflim.6 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ 𝑉 ) | ||
| Assertion | mbflim | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbflim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | mbflim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | mbflim.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 ) | |
| 4 | mbflim.5 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 5 | mbflim.6 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ 𝑉 ) | |
| 6 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 7 | 6 | mptex | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ∈ V |
| 8 | 7 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ∈ V ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
| 10 | 5 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 11 | 4 10 | mbfmptcl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 12 | 11 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 13 | 12 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℂ ) |
| 14 | 13 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ) |
| 15 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) | |
| 16 | 12 | recld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 17 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) | |
| 18 | 17 | fvmpt2 | ⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( ℜ ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ 𝐵 ) ) |
| 19 | 15 16 18 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ 𝐵 ) ) |
| 20 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) | |
| 21 | 20 | fvmpt2 | ⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 22 | 15 12 21 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = 𝐵 ) |
| 23 | 22 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) = ( ℜ ‘ 𝐵 ) ) |
| 24 | 19 23 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 25 | 24 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 26 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) | |
| 27 | nfcv | ⊢ Ⅎ 𝑛 ℜ | |
| 28 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) | |
| 29 | 27 28 | nffv | ⊢ Ⅎ 𝑛 ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 30 | 26 29 | nfeq | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 31 | nfv | ⊢ Ⅎ 𝑘 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) | |
| 32 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) ) | |
| 33 | 2fveq3 | ⊢ ( 𝑘 = 𝑛 → ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) | |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝑘 = 𝑛 → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) ) |
| 35 | 30 31 34 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 36 | 25 35 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 37 | 36 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℜ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 38 | 1 3 8 9 14 37 | climre | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( ℜ ‘ 𝐵 ) ) ⇝ ( ℜ ‘ 𝐶 ) ) |
| 39 | 11 | ismbfcn2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |
| 40 | 4 39 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) |
| 41 | 40 | simpld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
| 42 | 11 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 43 | 42 | recld | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 44 | 1 2 38 41 43 | mbflimlem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ) |
| 45 | 6 | mptex | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ∈ V |
| 46 | 45 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ∈ V ) |
| 47 | 12 | imcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 48 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) | |
| 49 | 48 | fvmpt2 | ⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( ℑ ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ 𝐵 ) ) |
| 50 | 15 47 49 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ 𝐵 ) ) |
| 51 | 22 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) = ( ℑ ‘ 𝐵 ) ) |
| 52 | 50 51 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 53 | 52 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 54 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) | |
| 55 | nfcv | ⊢ Ⅎ 𝑛 ℑ | |
| 56 | 55 28 | nffv | ⊢ Ⅎ 𝑛 ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 57 | 54 56 | nfeq | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) |
| 58 | nfv | ⊢ Ⅎ 𝑘 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) | |
| 59 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) ) | |
| 60 | 2fveq3 | ⊢ ( 𝑘 = 𝑛 → ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) | |
| 61 | 59 60 | eqeq12d | ⊢ ( 𝑘 = 𝑛 → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) ) |
| 62 | 57 58 61 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ↔ ∀ 𝑛 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑛 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) ) |
| 63 | 53 62 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 64 | 63 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ℑ ‘ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) ) |
| 65 | 1 3 46 9 14 64 | climim | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ 𝑍 ↦ ( ℑ ‘ 𝐵 ) ) ⇝ ( ℑ ‘ 𝐶 ) ) |
| 66 | 40 | simprd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
| 67 | 42 | imcld | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 68 | 1 2 65 66 67 | mbflimlem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) |
| 69 | climcl | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐶 → 𝐶 ∈ ℂ ) | |
| 70 | 3 69 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 71 | 70 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) ) |
| 72 | 44 68 71 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |