This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | ||
| Assertion | mbfsub | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | |
| 3 | mbff | ⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 5 | elinel1 | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐹 ) | |
| 6 | ffvelcdm | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 8 | mbff | ⊢ ( 𝐺 ∈ MblFn → 𝐺 : dom 𝐺 ⟶ ℂ ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 10 | elinel2 | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) | |
| 11 | ffvelcdm | ⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) | |
| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 13 | 7 12 | negsubd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 14 | 13 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) ) |
| 15 | 14 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 16 | 4 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
| 17 | 9 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn dom 𝐺 ) |
| 18 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 19 | 1 18 | syl | ⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
| 20 | mbfdm | ⊢ ( 𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → dom 𝐺 ∈ dom vol ) |
| 22 | eqid | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) | |
| 23 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 24 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 25 | 16 17 19 21 22 23 24 | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 26 | inmbl | ⊢ ( ( dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol ) → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) | |
| 27 | 19 21 26 | syl2anc | ⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
| 28 | 12 | negcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → - ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 29 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 30 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ) | |
| 31 | 27 7 28 29 30 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + - ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 32 | 15 25 31 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) = ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 33 | inss1 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 | |
| 34 | resmpt | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 35 | 33 34 | mp1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 37 | 36 1 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 38 | mbfres | ⊢ ( ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) | |
| 39 | 37 27 38 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 40 | 35 39 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 41 | inss2 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 | |
| 42 | resmpt | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 43 | 41 42 | mp1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 44 | 9 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 45 | 44 2 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
| 46 | mbfres | ⊢ ( ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) | |
| 47 | 45 27 46 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 48 | 43 47 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
| 49 | 12 48 | mbfneg | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
| 50 | 40 49 | mbfadd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ - ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 51 | 32 50 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) ∈ MblFn ) |