This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of lower sums is a set of extended reals. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itg2val.1 | ⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| Assertion | itg2lcl | ⊢ 𝐿 ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | ⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| 2 | itg1cl | ⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ∈ ℝ ) | |
| 3 | 2 | rexrd | ⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ∈ ℝ* ) |
| 4 | simpr | ⊢ ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → 𝑥 = ( ∫1 ‘ 𝑔 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → ( 𝑥 ∈ ℝ* ↔ ( ∫1 ‘ 𝑔 ) ∈ ℝ* ) ) |
| 6 | 3 5 | syl5ibrcom | ⊢ ( 𝑔 ∈ dom ∫1 → ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → 𝑥 ∈ ℝ* ) ) |
| 7 | 6 | rexlimiv | ⊢ ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → 𝑥 ∈ ℝ* ) |
| 8 | 7 | abssi | ⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* |
| 9 | 1 8 | eqsstri | ⊢ 𝐿 ⊆ ℝ* |