This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfid | ⊢ ( 𝐴 ∈ dom vol → ( I ↾ 𝐴 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvresima | ⊢ ( ◡ ( I ↾ 𝐴 ) “ 𝑥 ) = ( ( ◡ I “ 𝑥 ) ∩ 𝐴 ) | |
| 2 | cnvi | ⊢ ◡ I = I | |
| 3 | 2 | imaeq1i | ⊢ ( ◡ I “ 𝑥 ) = ( I “ 𝑥 ) |
| 4 | imai | ⊢ ( I “ 𝑥 ) = 𝑥 | |
| 5 | 3 4 | eqtri | ⊢ ( ◡ I “ 𝑥 ) = 𝑥 |
| 6 | 5 | ineq1i | ⊢ ( ( ◡ I “ 𝑥 ) ∩ 𝐴 ) = ( 𝑥 ∩ 𝐴 ) |
| 7 | 1 6 | eqtri | ⊢ ( ◡ ( I ↾ 𝐴 ) “ 𝑥 ) = ( 𝑥 ∩ 𝐴 ) |
| 8 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 9 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 10 | ovelrn | ⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝑥 ∈ ran (,) ↔ ∃ 𝑦 ∈ ℝ* ∃ 𝑧 ∈ ℝ* 𝑥 = ( 𝑦 (,) 𝑧 ) ) ) | |
| 11 | 8 9 10 | mp2b | ⊢ ( 𝑥 ∈ ran (,) ↔ ∃ 𝑦 ∈ ℝ* ∃ 𝑧 ∈ ℝ* 𝑥 = ( 𝑦 (,) 𝑧 ) ) |
| 12 | id | ⊢ ( 𝑥 = ( 𝑦 (,) 𝑧 ) → 𝑥 = ( 𝑦 (,) 𝑧 ) ) | |
| 13 | ioombl | ⊢ ( 𝑦 (,) 𝑧 ) ∈ dom vol | |
| 14 | 12 13 | eqeltrdi | ⊢ ( 𝑥 = ( 𝑦 (,) 𝑧 ) → 𝑥 ∈ dom vol ) |
| 15 | 14 | a1i | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑥 = ( 𝑦 (,) 𝑧 ) → 𝑥 ∈ dom vol ) ) |
| 16 | 15 | rexlimivv | ⊢ ( ∃ 𝑦 ∈ ℝ* ∃ 𝑧 ∈ ℝ* 𝑥 = ( 𝑦 (,) 𝑧 ) → 𝑥 ∈ dom vol ) |
| 17 | 11 16 | sylbi | ⊢ ( 𝑥 ∈ ran (,) → 𝑥 ∈ dom vol ) |
| 18 | id | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ∈ dom vol ) | |
| 19 | inmbl | ⊢ ( ( 𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( 𝑥 ∩ 𝐴 ) ∈ dom vol ) | |
| 20 | 17 18 19 | syl2anr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,) ) → ( 𝑥 ∩ 𝐴 ) ∈ dom vol ) |
| 21 | 7 20 | eqeltrid | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( I ↾ 𝐴 ) “ 𝑥 ) ∈ dom vol ) |
| 22 | 21 | ralrimiva | ⊢ ( 𝐴 ∈ dom vol → ∀ 𝑥 ∈ ran (,) ( ◡ ( I ↾ 𝐴 ) “ 𝑥 ) ∈ dom vol ) |
| 23 | f1oi | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | |
| 24 | f1of | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ) | |
| 25 | 23 24 | ax-mp | ⊢ ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 |
| 26 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 27 | fss | ⊢ ( ( ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ∧ 𝐴 ⊆ ℝ ) → ( I ↾ 𝐴 ) : 𝐴 ⟶ ℝ ) | |
| 28 | 25 26 27 | sylancr | ⊢ ( 𝐴 ∈ dom vol → ( I ↾ 𝐴 ) : 𝐴 ⟶ ℝ ) |
| 29 | ismbf | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 ⟶ ℝ → ( ( I ↾ 𝐴 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( I ↾ 𝐴 ) “ 𝑥 ) ∈ dom vol ) ) | |
| 30 | 28 29 | syl | ⊢ ( 𝐴 ∈ dom vol → ( ( I ↾ 𝐴 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( I ↾ 𝐴 ) “ 𝑥 ) ∈ dom vol ) ) |
| 31 | 22 30 | mpbird | ⊢ ( 𝐴 ∈ dom vol → ( I ↾ 𝐴 ) ∈ MblFn ) |