This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfid | |- ( A e. dom vol -> ( _I |` A ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvresima | |- ( `' ( _I |` A ) " x ) = ( ( `' _I " x ) i^i A ) |
|
| 2 | cnvi | |- `' _I = _I |
|
| 3 | 2 | imaeq1i | |- ( `' _I " x ) = ( _I " x ) |
| 4 | imai | |- ( _I " x ) = x |
|
| 5 | 3 4 | eqtri | |- ( `' _I " x ) = x |
| 6 | 5 | ineq1i | |- ( ( `' _I " x ) i^i A ) = ( x i^i A ) |
| 7 | 1 6 | eqtri | |- ( `' ( _I |` A ) " x ) = ( x i^i A ) |
| 8 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 9 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 10 | ovelrn | |- ( (,) Fn ( RR* X. RR* ) -> ( x e. ran (,) <-> E. y e. RR* E. z e. RR* x = ( y (,) z ) ) ) |
|
| 11 | 8 9 10 | mp2b | |- ( x e. ran (,) <-> E. y e. RR* E. z e. RR* x = ( y (,) z ) ) |
| 12 | id | |- ( x = ( y (,) z ) -> x = ( y (,) z ) ) |
|
| 13 | ioombl | |- ( y (,) z ) e. dom vol |
|
| 14 | 12 13 | eqeltrdi | |- ( x = ( y (,) z ) -> x e. dom vol ) |
| 15 | 14 | a1i | |- ( ( y e. RR* /\ z e. RR* ) -> ( x = ( y (,) z ) -> x e. dom vol ) ) |
| 16 | 15 | rexlimivv | |- ( E. y e. RR* E. z e. RR* x = ( y (,) z ) -> x e. dom vol ) |
| 17 | 11 16 | sylbi | |- ( x e. ran (,) -> x e. dom vol ) |
| 18 | id | |- ( A e. dom vol -> A e. dom vol ) |
|
| 19 | inmbl | |- ( ( x e. dom vol /\ A e. dom vol ) -> ( x i^i A ) e. dom vol ) |
|
| 20 | 17 18 19 | syl2anr | |- ( ( A e. dom vol /\ x e. ran (,) ) -> ( x i^i A ) e. dom vol ) |
| 21 | 7 20 | eqeltrid | |- ( ( A e. dom vol /\ x e. ran (,) ) -> ( `' ( _I |` A ) " x ) e. dom vol ) |
| 22 | 21 | ralrimiva | |- ( A e. dom vol -> A. x e. ran (,) ( `' ( _I |` A ) " x ) e. dom vol ) |
| 23 | f1oi | |- ( _I |` A ) : A -1-1-onto-> A |
|
| 24 | f1of | |- ( ( _I |` A ) : A -1-1-onto-> A -> ( _I |` A ) : A --> A ) |
|
| 25 | 23 24 | ax-mp | |- ( _I |` A ) : A --> A |
| 26 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 27 | fss | |- ( ( ( _I |` A ) : A --> A /\ A C_ RR ) -> ( _I |` A ) : A --> RR ) |
|
| 28 | 25 26 27 | sylancr | |- ( A e. dom vol -> ( _I |` A ) : A --> RR ) |
| 29 | ismbf | |- ( ( _I |` A ) : A --> RR -> ( ( _I |` A ) e. MblFn <-> A. x e. ran (,) ( `' ( _I |` A ) " x ) e. dom vol ) ) |
|
| 30 | 28 29 | syl | |- ( A e. dom vol -> ( ( _I |` A ) e. MblFn <-> A. x e. ran (,) ( `' ( _I |` A ) " x ) e. dom vol ) ) |
| 31 | 22 30 | mpbird | |- ( A e. dom vol -> ( _I |` A ) e. MblFn ) |