This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image under the identity relation. Theorem 3.16(viii) of Monk1 p. 38. (Contributed by NM, 30-Apr-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imai | ⊢ ( I “ 𝐴 ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima3 | ⊢ ( I “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) } | |
| 2 | df-br | ⊢ ( 𝑥 I 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 3 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 5 | 2 4 | bitr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ I ↔ 𝑥 = 𝑦 ) |
| 6 | 5 | anbi1ci | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ↔ ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴 ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴 ) ) |
| 8 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 9 | 8 | equsexvw | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴 ) ↔ 𝑦 ∈ 𝐴 ) |
| 10 | 7 9 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ↔ 𝑦 ∈ 𝐴 ) |
| 11 | 10 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) } = { 𝑦 ∣ 𝑦 ∈ 𝐴 } |
| 12 | abid2 | ⊢ { 𝑦 ∣ 𝑦 ∈ 𝐴 } = 𝐴 | |
| 13 | 1 11 12 | 3eqtri | ⊢ ( I “ 𝐴 ) = 𝐴 |