This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | ||
| mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | ||
| mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | ||
| mat1mhm.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | ||
| mat1mhm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝐴 ) | ||
| Assertion | mat1mhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| 3 | mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | |
| 5 | mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | |
| 6 | mat1mhm.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 7 | mat1mhm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝐴 ) | |
| 8 | 6 | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑀 ∈ Mnd ) |
| 10 | snfi | ⊢ { 𝐸 } ∈ Fin | |
| 11 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Ring ) | |
| 12 | 2 | matring | ⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 13 | 10 11 12 | sylancr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐴 ∈ Ring ) |
| 14 | 7 | ringmgp | ⊢ ( 𝐴 ∈ Ring → 𝑁 ∈ Mnd ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑁 ∈ Mnd ) |
| 16 | 1 2 3 4 5 | mat1f | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 : 𝐾 ⟶ 𝐵 ) |
| 17 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Mnd ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑅 ∈ Mnd ) |
| 20 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐸 ∈ 𝑉 ) | |
| 21 | 20 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐸 ∈ 𝑉 ) |
| 22 | simpll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑅 ∈ Ring ) | |
| 23 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 24 | snidg | ⊢ ( 𝐸 ∈ 𝑉 → 𝐸 ∈ { 𝐸 } ) | |
| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐸 ∈ { 𝐸 } ) |
| 26 | simprl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑤 ∈ 𝐾 ) | |
| 27 | 1 2 23 4 5 | mat1rhmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( Base ‘ 𝐴 ) ) |
| 28 | 22 21 26 27 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( Base ‘ 𝐴 ) ) |
| 29 | 2 1 23 25 25 28 | matecld | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ∈ 𝐾 ) |
| 30 | simprr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑦 ∈ 𝐾 ) | |
| 31 | 1 2 23 4 5 | mat1rhmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐴 ) ) |
| 32 | 22 21 30 31 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐴 ) ) |
| 33 | 2 1 23 25 25 32 | matecld | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ∈ 𝐾 ) |
| 34 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 35 | 1 34 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ∈ 𝐾 ∧ ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ∈ 𝐾 ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ∈ 𝐾 ) |
| 36 | 22 29 33 35 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ∈ 𝐾 ) |
| 37 | oveq2 | ⊢ ( 𝑒 = 𝐸 → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) = ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ) | |
| 38 | oveq1 | ⊢ ( 𝑒 = 𝐸 → ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) | |
| 39 | 37 38 | oveq12d | ⊢ ( 𝑒 = 𝐸 → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
| 40 | 39 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) ∧ 𝑒 = 𝐸 ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
| 41 | 1 19 21 36 40 | gsumsnd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) = ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) |
| 42 | 1 2 3 4 5 | mat1rhmelval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) = 𝑤 ) |
| 43 | 22 21 26 42 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) = 𝑤 ) |
| 44 | 1 2 3 4 5 | mat1rhmelval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = 𝑦 ) |
| 45 | 22 21 30 44 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) = 𝑦 ) |
| 46 | 43 45 | oveq12d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) = ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 47 | 41 46 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) = ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 48 | 1 2 3 4 5 | mat1rhmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 49 | 22 21 26 48 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 50 | 1 2 3 4 5 | mat1rhmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 51 | 22 21 30 50 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 52 | 49 51 | jca | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ) |
| 53 | 24 24 | jca | ⊢ ( 𝐸 ∈ 𝑉 → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
| 54 | 53 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) |
| 55 | eqid | ⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) | |
| 56 | 2 3 55 | matmulcell | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ∧ ( 𝐸 ∈ { 𝐸 } ∧ 𝐸 ∈ { 𝐸 } ) ) → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) ) |
| 57 | 22 52 54 56 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝐸 } ↦ ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) ) |
| 58 | 1 34 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
| 59 | 22 26 30 58 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) |
| 60 | 1 2 3 4 5 | mat1rhmelval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 61 | 22 21 59 60 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 62 | 47 57 61 | 3eqtr4rd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) |
| 63 | oveq1 | ⊢ ( 𝑖 = 𝐸 → ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) ) | |
| 64 | oveq1 | ⊢ ( 𝑖 = 𝐸 → ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) | |
| 65 | 63 64 | eqeq12d | ⊢ ( 𝑖 = 𝐸 → ( ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
| 66 | oveq2 | ⊢ ( 𝑗 = 𝐸 → ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) ) | |
| 67 | oveq2 | ⊢ ( 𝑗 = 𝐸 → ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) | |
| 68 | 66 67 | eqeq12d | ⊢ ( 𝑗 = 𝐸 → ( ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
| 69 | 65 68 | 2ralsng | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
| 70 | 20 69 | sylancom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ↔ ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) = ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) |
| 72 | 62 71 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) |
| 73 | 1 2 3 4 5 | mat1rhmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ) |
| 74 | 22 21 59 73 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ) |
| 75 | 13 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝐴 ∈ Ring ) |
| 76 | 3 55 | ringcl | ⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 77 | 75 49 51 76 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 78 | 2 3 | eqmat | ⊢ ( ( ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
| 79 | 74 77 78 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑖 ∈ { 𝐸 } ∀ 𝑗 ∈ { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) = ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) |
| 80 | 72 79 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 81 | 80 | ralrimivva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ∀ 𝑤 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 82 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 83 | 1 82 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
| 84 | 83 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 1r ‘ 𝑅 ) ∈ 𝐾 ) |
| 85 | 1 2 3 4 5 | mat1rhmval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } ) |
| 86 | 84 85 | mpd3an3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } ) |
| 87 | 2 1 4 | mat1dimid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 1r ‘ 𝐴 ) = { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } ) |
| 88 | 86 87 | eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝐴 ) ) |
| 89 | 16 81 88 | 3jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐹 : 𝐾 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝐴 ) ) ) |
| 90 | 6 1 | mgpbas | ⊢ 𝐾 = ( Base ‘ 𝑀 ) |
| 91 | 7 3 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑁 ) |
| 92 | 6 34 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 93 | 7 55 | mgpplusg | ⊢ ( .r ‘ 𝐴 ) = ( +g ‘ 𝑁 ) |
| 94 | 6 82 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 95 | eqid | ⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) | |
| 96 | 7 95 | ringidval | ⊢ ( 1r ‘ 𝐴 ) = ( 0g ‘ 𝑁 ) |
| 97 | 90 91 92 93 94 96 | ismhm | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd ) ∧ ( 𝐹 : 𝐾 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐾 ∀ 𝑦 ∈ 𝐾 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝐴 ) ) ) ) |
| 98 | 9 15 89 97 | syl21anbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |