This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1dim.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| mat1dim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| mat1dim.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | ||
| Assertion | mat1dimid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 1r ‘ 𝐴 ) = { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1dim.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| 2 | mat1dim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | mat1dim.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | |
| 4 | snfi | ⊢ { 𝐸 } ∈ Fin | |
| 5 | 4 | a1i | ⊢ ( 𝐸 ∈ 𝑉 → { 𝐸 } ∈ Fin ) |
| 6 | 5 | anim2i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝑅 ∈ Ring ∧ { 𝐸 } ∈ Fin ) ) |
| 7 | 6 | ancomd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 8 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 10 | 1 8 9 | mat1 | ⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 11 | 7 10 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 1r ‘ 𝐴 ) = ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 12 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐸 ∈ 𝑉 ) | |
| 13 | fvex | ⊢ ( 1r ‘ 𝑅 ) ∈ V | |
| 14 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 15 | 13 14 | ifex | ⊢ if ( 𝐸 = 𝐸 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V |
| 16 | 15 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → if ( 𝐸 = 𝐸 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V ) |
| 17 | eqid | ⊢ ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) | |
| 18 | eqeq1 | ⊢ ( 𝑥 = 𝐸 → ( 𝑥 = 𝑦 ↔ 𝐸 = 𝑦 ) ) | |
| 19 | 18 | ifbid | ⊢ ( 𝑥 = 𝐸 → if ( 𝑥 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝐸 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 20 | eqeq2 | ⊢ ( 𝑦 = 𝐸 → ( 𝐸 = 𝑦 ↔ 𝐸 = 𝐸 ) ) | |
| 21 | 20 | ifbid | ⊢ ( 𝑦 = 𝐸 → if ( 𝐸 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝐸 = 𝐸 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 22 | 17 19 21 | mposn | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ if ( 𝐸 = 𝐸 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ V ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = { 〈 〈 𝐸 , 𝐸 〉 , if ( 𝐸 = 𝐸 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) 〉 } ) |
| 23 | 12 12 16 22 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = { 〈 〈 𝐸 , 𝐸 〉 , if ( 𝐸 = 𝐸 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) 〉 } ) |
| 24 | eqid | ⊢ 𝐸 = 𝐸 | |
| 25 | 24 | iftruei | ⊢ if ( 𝐸 = 𝐸 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) |
| 26 | 25 | opeq2i | ⊢ 〈 〈 𝐸 , 𝐸 〉 , if ( 𝐸 = 𝐸 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) 〉 = 〈 〈 𝐸 , 𝐸 〉 , ( 1r ‘ 𝑅 ) 〉 |
| 27 | 26 | sneqi | ⊢ { 〈 〈 𝐸 , 𝐸 〉 , if ( 𝐸 = 𝐸 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) 〉 } = { 〈 〈 𝐸 , 𝐸 〉 , ( 1r ‘ 𝑅 ) 〉 } |
| 28 | 23 27 | eqtrdi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = { 〈 〈 𝐸 , 𝐸 〉 , ( 1r ‘ 𝑅 ) 〉 } ) |
| 29 | 3 | opeq1i | ⊢ 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 = 〈 〈 𝐸 , 𝐸 〉 , ( 1r ‘ 𝑅 ) 〉 |
| 30 | 29 | sneqi | ⊢ { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } = { 〈 〈 𝐸 , 𝐸 〉 , ( 1r ‘ 𝑅 ) 〉 } |
| 31 | 28 30 | eqtr4di | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝐸 } , 𝑦 ∈ { 𝐸 } ↦ if ( 𝑥 = 𝑦 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } ) |
| 32 | 11 31 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 1r ‘ 𝐴 ) = { 〈 𝑂 , ( 1r ‘ 𝑅 ) 〉 } ) |