This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | ||
| mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | ||
| mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | ||
| Assertion | mat1rhmelval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑋 ) 𝐸 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| 3 | mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | |
| 5 | mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | |
| 6 | df-ov | ⊢ ( 𝐸 ( 𝐹 ‘ 𝑋 ) 𝐸 ) = ( ( 𝐹 ‘ 𝑋 ) ‘ 〈 𝐸 , 𝐸 〉 ) | |
| 7 | 1 2 3 4 5 | mat1rhmval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑋 ) = { 〈 𝑂 , 𝑋 〉 } ) |
| 8 | 7 | fveq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) ‘ 〈 𝐸 , 𝐸 〉 ) = ( { 〈 𝑂 , 𝑋 〉 } ‘ 〈 𝐸 , 𝐸 〉 ) ) |
| 9 | 4 | eqcomi | ⊢ 〈 𝐸 , 𝐸 〉 = 𝑂 |
| 10 | 9 | fveq2i | ⊢ ( { 〈 𝑂 , 𝑋 〉 } ‘ 〈 𝐸 , 𝐸 〉 ) = ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) |
| 11 | opex | ⊢ 〈 𝐸 , 𝐸 〉 ∈ V | |
| 12 | 4 11 | eqeltri | ⊢ 𝑂 ∈ V |
| 13 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) | |
| 14 | fvsng | ⊢ ( ( 𝑂 ∈ V ∧ 𝑋 ∈ 𝐾 ) → ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) = 𝑋 ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) = 𝑋 ) |
| 16 | 10 15 | eqtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( { 〈 𝑂 , 𝑋 〉 } ‘ 〈 𝐸 , 𝐸 〉 ) = 𝑋 ) |
| 17 | 8 16 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) ‘ 〈 𝐸 , 𝐸 〉 ) = 𝑋 ) |
| 18 | 6 17 | eqtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐸 ( 𝐹 ‘ 𝑋 ) 𝐸 ) = 𝑋 ) |