This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a ring homomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | ||
| mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | ||
| mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | ||
| Assertion | mat1rhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑅 RingHom 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| 3 | mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | |
| 5 | mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | |
| 6 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Ring ) | |
| 7 | snfi | ⊢ { 𝐸 } ∈ Fin | |
| 8 | 2 | matring | ⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 9 | 7 6 8 | sylancr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐴 ∈ Ring ) |
| 10 | 1 2 3 4 5 | mat1ghm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝐴 ) ) |
| 11 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( mulGrp ‘ 𝐴 ) = ( mulGrp ‘ 𝐴 ) | |
| 13 | 1 2 3 4 5 11 12 | mat1mhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝐴 ) ) ) |
| 14 | 10 13 | jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝐴 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝐴 ) ) ) ) |
| 15 | 11 12 | isrhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝐴 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝐴 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝐴 ) ) ) ) ) |
| 16 | 6 9 14 15 | syl21anbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑅 RingHom 𝐴 ) ) |