This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matmulcell.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matmulcell.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| matmulcell.m | ⊢ × = ( .r ‘ 𝐴 ) | ||
| Assertion | matmulcell | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 × 𝑌 ) 𝐽 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝐽 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matmulcell.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matmulcell.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | matmulcell.m | ⊢ × = ( .r ‘ 𝐴 ) | |
| 4 | 1 2 | matrcl | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 5 | eqid | ⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) | |
| 6 | 1 5 | matmulr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 7 | 3 6 | eqtr4id | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → × = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) |
| 8 | 7 | a1d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑅 ∈ Ring → × = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑅 ∈ Ring → × = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑅 ∈ Ring → × = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) ) |
| 11 | 10 | impcom | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → × = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → × = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) |
| 13 | 12 | oveqd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝑋 × 𝑌 ) = ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) ) |
| 14 | 13 | oveqd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 × 𝑌 ) 𝐽 ) = ( 𝐼 ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) 𝐽 ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 17 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) | |
| 18 | 4 | simpld | ⊢ ( 𝑋 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑁 ∈ Fin ) |
| 21 | 1 15 2 | matbas2i | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 24 | 1 15 2 | matbas2i | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 26 | 25 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 27 | simp3l | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝐼 ∈ 𝑁 ) | |
| 28 | simp3r | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝐽 ∈ 𝑁 ) | |
| 29 | 5 15 16 17 20 20 20 23 26 27 28 | mamufv | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑌 ) 𝐽 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝐽 ) ) ) ) ) |
| 30 | 14 29 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 × 𝑌 ) 𝐽 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝐽 ) ) ) ) ) |