This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two square matrices of the same dimension are equal if they have the same entries. (Contributed by AV, 25-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqmat.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| eqmat.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| Assertion | eqmat | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑋 𝑗 ) = ( 𝑖 𝑌 𝑗 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqmat.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | eqmat.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 1 3 2 | matbas2i | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 5 | elmapfn | ⊢ ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑋 Fn ( 𝑁 × 𝑁 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 Fn ( 𝑁 × 𝑁 ) ) |
| 7 | 1 3 2 | matbas2i | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 8 | elmapfn | ⊢ ( 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑌 Fn ( 𝑁 × 𝑁 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 Fn ( 𝑁 × 𝑁 ) ) |
| 10 | eqfnov2 | ⊢ ( ( 𝑋 Fn ( 𝑁 × 𝑁 ) ∧ 𝑌 Fn ( 𝑁 × 𝑁 ) ) → ( 𝑋 = 𝑌 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑋 𝑗 ) = ( 𝑖 𝑌 𝑗 ) ) ) | |
| 11 | 6 9 10 | syl2an | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑋 𝑗 ) = ( 𝑖 𝑌 𝑗 ) ) ) |