This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xpmapen . (Contributed by NM, 1-May-2004) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpmapen.1 | ⊢ 𝐴 ∈ V | |
| xpmapen.2 | ⊢ 𝐵 ∈ V | ||
| xpmapen.3 | ⊢ 𝐶 ∈ V | ||
| xpmapenlem.4 | ⊢ 𝐷 = ( 𝑧 ∈ 𝐶 ↦ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) | ||
| xpmapenlem.5 | ⊢ 𝑅 = ( 𝑧 ∈ 𝐶 ↦ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) | ||
| xpmapenlem.6 | ⊢ 𝑆 = ( 𝑧 ∈ 𝐶 ↦ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) | ||
| Assertion | xpmapenlem | ⊢ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ≈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpmapen.1 | ⊢ 𝐴 ∈ V | |
| 2 | xpmapen.2 | ⊢ 𝐵 ∈ V | |
| 3 | xpmapen.3 | ⊢ 𝐶 ∈ V | |
| 4 | xpmapenlem.4 | ⊢ 𝐷 = ( 𝑧 ∈ 𝐶 ↦ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) | |
| 5 | xpmapenlem.5 | ⊢ 𝑅 = ( 𝑧 ∈ 𝐶 ↦ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) | |
| 6 | xpmapenlem.6 | ⊢ 𝑆 = ( 𝑧 ∈ 𝐶 ↦ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) | |
| 7 | ovex | ⊢ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∈ V | |
| 8 | ovex | ⊢ ( 𝐴 ↑m 𝐶 ) ∈ V | |
| 9 | ovex | ⊢ ( 𝐵 ↑m 𝐶 ) ∈ V | |
| 10 | 8 9 | xpex | ⊢ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∈ V |
| 11 | 1 2 | xpex | ⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 12 | 11 3 | elmap | ⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ↔ 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
| 13 | ffvelcdm | ⊢ ( ( 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) ) | |
| 14 | 12 13 | sylanb | ⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) ) |
| 15 | xp1st | ⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐴 ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧 ∈ 𝐶 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐴 ) |
| 17 | 16 4 | fmptd | ⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝐷 : 𝐶 ⟶ 𝐴 ) |
| 18 | 1 3 | elmap | ⊢ ( 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ↔ 𝐷 : 𝐶 ⟶ 𝐴 ) |
| 19 | 17 18 | sylibr | ⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ) |
| 20 | xp2nd | ⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐵 ) | |
| 21 | 14 20 | syl | ⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧 ∈ 𝐶 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 22 | 21 5 | fmptd | ⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝑅 : 𝐶 ⟶ 𝐵 ) |
| 23 | 2 3 | elmap | ⊢ ( 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ↔ 𝑅 : 𝐶 ⟶ 𝐵 ) |
| 24 | 22 23 | sylibr | ⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) |
| 25 | 19 24 | opelxpd | ⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 〈 𝐷 , 𝑅 〉 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) |
| 26 | xp1st | ⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐶 ) ) | |
| 27 | 1 3 | elmap | ⊢ ( ( 1st ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐶 ) ↔ ( 1st ‘ 𝑦 ) : 𝐶 ⟶ 𝐴 ) |
| 28 | 26 27 | sylib | ⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 𝑦 ) : 𝐶 ⟶ 𝐴 ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐴 ) |
| 30 | xp2nd | ⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 𝑦 ) ∈ ( 𝐵 ↑m 𝐶 ) ) | |
| 31 | 2 3 | elmap | ⊢ ( ( 2nd ‘ 𝑦 ) ∈ ( 𝐵 ↑m 𝐶 ) ↔ ( 2nd ‘ 𝑦 ) : 𝐶 ⟶ 𝐵 ) |
| 32 | 30 31 | sylib | ⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 𝑦 ) : 𝐶 ⟶ 𝐵 ) |
| 33 | 32 | ffvelcdmda | ⊢ ( ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐵 ) |
| 34 | 29 33 | opelxpd | ⊢ ( ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∧ 𝑧 ∈ 𝐶 ) → 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 35 | 34 6 | fmptd | ⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → 𝑆 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
| 36 | 11 3 | elmap | ⊢ ( 𝑆 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ↔ 𝑆 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
| 37 | 35 36 | sylibr | ⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → 𝑆 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ) |
| 38 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 39 | 38 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 40 | 28 | feqmptd | ⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 41 | 40 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 1st ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 42 | simplr | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → 𝑥 = 𝑆 ) | |
| 43 | 42 | fveq1d | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) = ( 𝑆 ‘ 𝑧 ) ) |
| 44 | opex | ⊢ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ∈ V | |
| 45 | 6 | fvmpt2 | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ∈ V ) → ( 𝑆 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
| 46 | 44 45 | mpan2 | ⊢ ( 𝑧 ∈ 𝐶 → ( 𝑆 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
| 47 | 46 | adantl | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
| 48 | 43 47 | eqtrd | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
| 49 | 48 | fveq2d | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) = ( 1st ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) ) |
| 50 | fvex | ⊢ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ∈ V | |
| 51 | fvex | ⊢ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ∈ V | |
| 52 | 50 51 | op1st | ⊢ ( 1st ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) = ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) |
| 53 | 49 52 | eqtrdi | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) |
| 54 | 53 | mpteq2dva | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 𝑧 ∈ 𝐶 ↦ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 55 | 4 54 | eqtrid | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝐷 = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 56 | 41 55 | eqtr4d | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 1st ‘ 𝑦 ) = 𝐷 ) |
| 57 | 32 | feqmptd | ⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 58 | 57 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 2nd ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 59 | 48 | fveq2d | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) = ( 2nd ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) ) |
| 60 | 50 51 | op2nd | ⊢ ( 2nd ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) = ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) |
| 61 | 59 60 | eqtrdi | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) = ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) |
| 62 | 61 | mpteq2dva | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 𝑧 ∈ 𝐶 ↦ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 63 | 5 62 | eqtrid | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑅 = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
| 64 | 58 63 | eqtr4d | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 2nd ‘ 𝑦 ) = 𝑅 ) |
| 65 | 56 64 | opeq12d | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 = 〈 𝐷 , 𝑅 〉 ) |
| 66 | 39 65 | eqtrd | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑦 = 〈 𝐷 , 𝑅 〉 ) |
| 67 | simpll | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ) | |
| 68 | 67 12 | sylib | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
| 69 | 68 | feqmptd | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 = ( 𝑧 ∈ 𝐶 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 70 | simpr | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑦 = 〈 𝐷 , 𝑅 〉 ) | |
| 71 | 70 | fveq2d | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 1st ‘ 𝑦 ) = ( 1st ‘ 〈 𝐷 , 𝑅 〉 ) ) |
| 72 | 19 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ) |
| 73 | 24 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) |
| 74 | op1stg | ⊢ ( ( 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ∧ 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 〈 𝐷 , 𝑅 〉 ) = 𝐷 ) | |
| 75 | 72 73 74 | syl2anc | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 1st ‘ 〈 𝐷 , 𝑅 〉 ) = 𝐷 ) |
| 76 | 71 75 | eqtrd | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 1st ‘ 𝑦 ) = 𝐷 ) |
| 77 | 76 | fveq1d | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝐷 ‘ 𝑧 ) ) |
| 78 | fvex | ⊢ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V | |
| 79 | 4 | fvmpt2 | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V ) → ( 𝐷 ‘ 𝑧 ) = ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 80 | 78 79 | mpan2 | ⊢ ( 𝑧 ∈ 𝐶 → ( 𝐷 ‘ 𝑧 ) = ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 81 | 77 80 | sylan9eq | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) = ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 82 | 70 | fveq2d | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 〈 𝐷 , 𝑅 〉 ) ) |
| 83 | op2ndg | ⊢ ( ( 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ∧ 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 〈 𝐷 , 𝑅 〉 ) = 𝑅 ) | |
| 84 | 72 73 83 | syl2anc | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 2nd ‘ 〈 𝐷 , 𝑅 〉 ) = 𝑅 ) |
| 85 | 82 84 | eqtrd | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 2nd ‘ 𝑦 ) = 𝑅 ) |
| 86 | 85 | fveq1d | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝑅 ‘ 𝑧 ) ) |
| 87 | fvex | ⊢ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V | |
| 88 | 5 | fvmpt2 | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V ) → ( 𝑅 ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 89 | 87 88 | mpan2 | ⊢ ( 𝑧 ∈ 𝐶 → ( 𝑅 ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 90 | 86 89 | sylan9eq | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
| 91 | 81 90 | opeq12d | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) 〉 ) |
| 92 | 68 | ffvelcdmda | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) ) |
| 93 | 1st2nd2 | ⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 𝑥 ‘ 𝑧 ) = 〈 ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) 〉 ) | |
| 94 | 92 93 | syl | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) = 〈 ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) 〉 ) |
| 95 | 91 94 | eqtr4d | ⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 = ( 𝑥 ‘ 𝑧 ) ) |
| 96 | 95 | mpteq2dva | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 𝑧 ∈ 𝐶 ↦ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) = ( 𝑧 ∈ 𝐶 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 97 | 6 96 | eqtrid | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑆 = ( 𝑧 ∈ 𝐶 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 98 | 69 97 | eqtr4d | ⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 = 𝑆 ) |
| 99 | 66 98 | impbida | ⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) → ( 𝑥 = 𝑆 ↔ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ) |
| 100 | 7 10 25 37 99 | en3i | ⊢ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ≈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) |