This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submodules are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssacs.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| lssacs.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lssacs | ⊢ ( 𝑊 ∈ LMod → 𝑆 ∈ ( ACS ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssacs.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | lssacs.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | 1 2 | lssss | ⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ⊆ 𝐵 ) |
| 4 | 3 | a1i | ⊢ ( 𝑊 ∈ LMod → ( 𝑎 ∈ 𝑆 → 𝑎 ⊆ 𝐵 ) ) |
| 5 | inss2 | ⊢ ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ⊆ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } | |
| 6 | ssrab2 | ⊢ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ⊆ 𝒫 𝐵 | |
| 7 | 5 6 | sstri | ⊢ ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ⊆ 𝒫 𝐵 |
| 8 | 7 | sseli | ⊢ ( 𝑎 ∈ ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) → 𝑎 ∈ 𝒫 𝐵 ) |
| 9 | 8 | elpwid | ⊢ ( 𝑎 ∈ ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) → 𝑎 ⊆ 𝐵 ) |
| 10 | 9 | a1i | ⊢ ( 𝑊 ∈ LMod → ( 𝑎 ∈ ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) → 𝑎 ⊆ 𝐵 ) ) |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 13 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 14 | 11 12 1 13 2 | islss4 | ⊢ ( 𝑊 ∈ LMod → ( 𝑎 ∈ 𝑆 ↔ ( 𝑎 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑎 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵 ) → ( 𝑎 ∈ 𝑆 ↔ ( 𝑎 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑎 ) ) ) |
| 16 | velpw | ⊢ ( 𝑎 ∈ 𝒫 𝐵 ↔ 𝑎 ⊆ 𝐵 ) | |
| 17 | eleq2w | ⊢ ( 𝑏 = 𝑎 → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 ↔ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑎 ) ) | |
| 18 | 17 | raleqbi1dv | ⊢ ( 𝑏 = 𝑎 → ( ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑎 ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑏 = 𝑎 → ( ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑎 ) ) |
| 20 | 19 | elrab3 | ⊢ ( 𝑎 ∈ 𝒫 𝐵 → ( 𝑎 ∈ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ↔ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑎 ) ) |
| 21 | 16 20 | sylbir | ⊢ ( 𝑎 ⊆ 𝐵 → ( 𝑎 ∈ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ↔ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑎 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵 ) → ( 𝑎 ∈ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ↔ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑎 ) ) |
| 23 | 22 | anbi2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵 ) → ( ( 𝑎 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑎 ∈ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ↔ ( 𝑎 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑎 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑎 ) ) ) |
| 24 | 15 23 | bitr4d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵 ) → ( 𝑎 ∈ 𝑆 ↔ ( 𝑎 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑎 ∈ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ) ) |
| 25 | elin | ⊢ ( 𝑎 ∈ ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ↔ ( 𝑎 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑎 ∈ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ) | |
| 26 | 24 25 | bitr4di | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝐵 ) → ( 𝑎 ∈ 𝑆 ↔ 𝑎 ∈ ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ) ) |
| 27 | 26 | ex | ⊢ ( 𝑊 ∈ LMod → ( 𝑎 ⊆ 𝐵 → ( 𝑎 ∈ 𝑆 ↔ 𝑎 ∈ ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ) ) ) |
| 28 | 4 10 27 | pm5.21ndd | ⊢ ( 𝑊 ∈ LMod → ( 𝑎 ∈ 𝑆 ↔ 𝑎 ∈ ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ) ) |
| 29 | 28 | eqrdv | ⊢ ( 𝑊 ∈ LMod → 𝑆 = ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ) |
| 30 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 31 | mreacs | ⊢ ( 𝐵 ∈ V → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) | |
| 32 | 30 31 | mp1i | ⊢ ( 𝑊 ∈ LMod → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
| 33 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 34 | 1 | subgacs | ⊢ ( 𝑊 ∈ Grp → ( SubGrp ‘ 𝑊 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 35 | 33 34 | syl | ⊢ ( 𝑊 ∈ LMod → ( SubGrp ‘ 𝑊 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 36 | 1 11 13 12 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
| 37 | 36 | 3expb | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
| 38 | 37 | ralrimivva | ⊢ ( 𝑊 ∈ LMod → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
| 39 | acsfn1c | ⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) → { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ∈ ( ACS ‘ 𝐵 ) ) | |
| 40 | 30 38 39 | sylancr | ⊢ ( 𝑊 ∈ LMod → { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ∈ ( ACS ‘ 𝐵 ) ) |
| 41 | mreincl | ⊢ ( ( ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ∧ ( SubGrp ‘ 𝑊 ) ∈ ( ACS ‘ 𝐵 ) ∧ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ∈ ( ACS ‘ 𝐵 ) ) → ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ∈ ( ACS ‘ 𝐵 ) ) | |
| 42 | 32 35 40 41 | syl3anc | ⊢ ( 𝑊 ∈ LMod → ( ( SubGrp ‘ 𝑊 ) ∩ { 𝑏 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑏 } ) ∈ ( ACS ‘ 𝐵 ) ) |
| 43 | 29 42 | eqeltrd | ⊢ ( 𝑊 ∈ LMod → 𝑆 ∈ ( ACS ‘ 𝐵 ) ) |