This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acsfn1c | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riinrab | ⊢ ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } | |
| 2 | mreacs | ⊢ ( 𝑋 ∈ 𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) | |
| 3 | acsfn1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) | |
| 4 | 3 | ex | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) ) |
| 5 | 4 | ralimdv | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ∀ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |
| 7 | mreriincl | ⊢ ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ) ∈ ( ACS ‘ 𝑋 ) ) | |
| 8 | 2 6 7 | syl2an2r | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ) ∈ ( ACS ‘ 𝑋 ) ) |
| 9 | 1 8 | eqeltrrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |