This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreincl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
| 3 | simp1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 4 | prssi | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → { 𝐴 , 𝐵 } ⊆ 𝐶 ) | |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
| 6 | prnzg | ⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 , 𝐵 } ≠ ∅ ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → { 𝐴 , 𝐵 } ≠ ∅ ) |
| 8 | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ∧ { 𝐴 , 𝐵 } ≠ ∅ ) → ∩ { 𝐴 , 𝐵 } ∈ 𝐶 ) | |
| 9 | 3 5 7 8 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ∩ { 𝐴 , 𝐵 } ∈ 𝐶 ) |
| 10 | 2 9 | eqeltrrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) |