This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmmod.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | lsmmod | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) = ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmmod.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | simpl1 | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | simpl2 | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | inss1 | ⊢ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑇 | |
| 5 | 4 | a1i | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑇 ∩ 𝑈 ) ⊆ 𝑇 ) |
| 6 | 1 | lsmless2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑇 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 7 | 2 3 5 6 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 8 | simpr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → 𝑆 ⊆ 𝑈 ) | |
| 9 | inss2 | ⊢ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 | |
| 10 | 9 | a1i | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 ) |
| 11 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 13 | 12 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 14 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 15 | 2 11 13 14 | 4syl | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 16 | simpl3 | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 17 | mreincl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 18 | 15 3 16 17 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 19 | 1 | lsmlub | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊆ 𝑈 ∧ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 ) ↔ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ 𝑈 ) ) |
| 20 | 2 18 16 19 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( ( 𝑆 ⊆ 𝑈 ∧ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 ) ↔ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ 𝑈 ) ) |
| 21 | 8 10 20 | mpbi2and | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ 𝑈 ) |
| 22 | 7 21 | ssind | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ⊆ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ) |
| 23 | elin | ⊢ ( 𝑥 ∈ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ↔ ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) ) | |
| 24 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 25 | 24 1 | lsmelval | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) ↔ ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 26 | 2 3 25 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) ↔ ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 27 | 2 | adantr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 28 | 18 | adantr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 29 | simprll | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑦 ∈ 𝑆 ) | |
| 30 | simprlr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑧 ∈ 𝑇 ) | |
| 31 | 27 11 | syl | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝐺 ∈ Grp ) |
| 32 | 16 | adantr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 33 | 12 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 34 | 32 33 | syl | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 35 | 8 | adantr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑆 ⊆ 𝑈 ) |
| 36 | 35 29 | sseldd | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
| 37 | 34 36 | sseldd | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 38 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 39 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 40 | 12 24 38 39 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 41 | 31 37 40 | syl2anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 42 | 41 | oveq1d | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 43 | 39 | subginvcl | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑈 ) |
| 44 | 32 36 43 | syl2anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑈 ) |
| 45 | 34 44 | sseldd | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 46 | simpll2 | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 47 | 12 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 48 | 46 47 | syl | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 49 | 48 30 | sseldd | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
| 50 | 12 24 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 51 | 31 45 37 49 50 | syl13anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 52 | 12 24 38 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
| 53 | 31 49 52 | syl2anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
| 54 | 42 51 53 | 3eqtr3d | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑧 ) |
| 55 | simprr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) | |
| 56 | 24 | subgcl | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑈 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑈 ) |
| 57 | 32 44 55 56 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑈 ) |
| 58 | 54 57 | eqeltrrd | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) |
| 59 | 30 58 | elind | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → 𝑧 ∈ ( 𝑇 ∩ 𝑈 ) ) |
| 60 | 24 1 | lsmelvali | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑇 ∩ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( 𝑇 ∩ 𝑈 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) |
| 61 | 27 28 29 59 60 | syl22anc | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) |
| 62 | 61 | expr | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) |
| 63 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∈ 𝑈 ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 ) ) | |
| 64 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) | |
| 65 | 63 64 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ↔ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑈 → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) ) |
| 66 | 62 65 | syl5ibrcom | ⊢ ( ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) ) |
| 67 | 66 | rexlimdvva | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) ) |
| 68 | 26 67 | sylbid | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) ) |
| 69 | 68 | impd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( ( 𝑥 ∈ ( 𝑆 ⊕ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) |
| 70 | 23 69 | biimtrid | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑥 ∈ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) → 𝑥 ∈ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) ) |
| 71 | 70 | ssrdv | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ⊆ ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) ) |
| 72 | 22 71 | eqssd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑆 ⊕ ( 𝑇 ∩ 𝑈 ) ) = ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ) |