This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| lsmdisj.i | ⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ) | ||
| lsmdisj2.i | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = { 0 } ) | ||
| Assertion | lsmdisj2 | ⊢ ( 𝜑 → ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | lsmdisj.i | ⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ) | |
| 7 | lsmdisj2.i | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = { 0 } ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 9 | 8 1 | lsmelval | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) ↔ ∃ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ) |
| 10 | 2 4 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) ↔ ∃ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ) |
| 11 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ 𝑆 ) | |
| 12 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝐺 ∈ Grp ) |
| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 17 | 16 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 18 | 15 17 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 19 | 18 11 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ ( Base ‘ 𝐺 ) ) |
| 20 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 21 | 16 8 5 20 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) = 0 ) |
| 22 | 14 19 21 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) = 0 ) |
| 23 | 22 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( 0 ( +g ‘ 𝐺 ) 𝑢 ) ) |
| 24 | 20 | subginvcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑠 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ 𝑆 ) |
| 25 | 15 11 24 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ 𝑆 ) |
| 26 | 18 25 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ) |
| 27 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 28 | 16 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 29 | 27 28 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 30 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ 𝑈 ) | |
| 31 | 29 30 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ ( Base ‘ 𝐺 ) ) |
| 32 | 16 8 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ) |
| 33 | 14 26 19 31 32 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ) |
| 34 | 16 8 5 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑢 ) |
| 35 | 14 31 34 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 0 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑢 ) |
| 36 | 23 33 35 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) = 𝑢 ) |
| 37 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 38 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) | |
| 39 | 8 1 | lsmelvali | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ 𝑆 ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ∈ ( 𝑆 ⊕ 𝑇 ) ) |
| 40 | 15 37 25 38 39 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ∈ ( 𝑆 ⊕ 𝑇 ) ) |
| 41 | 36 40 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ ( 𝑆 ⊕ 𝑇 ) ) |
| 42 | 41 30 | elind | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ) |
| 43 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ) |
| 44 | 42 43 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ { 0 } ) |
| 45 | elsni | ⊢ ( 𝑢 ∈ { 0 } → 𝑢 = 0 ) | |
| 46 | 44 45 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 = 0 ) |
| 47 | 46 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = ( 𝑠 ( +g ‘ 𝐺 ) 0 ) ) |
| 48 | 16 8 5 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 0 ) = 𝑠 ) |
| 49 | 14 19 48 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 0 ) = 𝑠 ) |
| 50 | 47 49 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑠 ) |
| 51 | 50 38 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ 𝑇 ) |
| 52 | 11 51 | elind | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ ( 𝑆 ∩ 𝑇 ) ) |
| 53 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑆 ∩ 𝑇 ) = { 0 } ) |
| 54 | 52 53 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ { 0 } ) |
| 55 | elsni | ⊢ ( 𝑠 ∈ { 0 } → 𝑠 = 0 ) | |
| 56 | 54 55 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 = 0 ) |
| 57 | 56 46 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = ( 0 ( +g ‘ 𝐺 ) 0 ) ) |
| 58 | 16 5 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 59 | 16 8 5 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 60 | 13 58 59 | syl2anc2 | ⊢ ( 𝜑 → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 61 | 60 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 62 | 57 61 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 0 ) |
| 63 | 62 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) → ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 0 ) ) |
| 64 | eleq1 | ⊢ ( 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( 𝑥 ∈ 𝑇 ↔ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) ) | |
| 65 | eqeq1 | ⊢ ( 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( 𝑥 = 0 ↔ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 0 ) ) | |
| 66 | 64 65 | imbi12d | ⊢ ( 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( ( 𝑥 ∈ 𝑇 → 𝑥 = 0 ) ↔ ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 0 ) ) ) |
| 67 | 63 66 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) → ( 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( 𝑥 ∈ 𝑇 → 𝑥 = 0 ) ) ) |
| 68 | 67 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( 𝑥 ∈ 𝑇 → 𝑥 = 0 ) ) ) |
| 69 | 10 68 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) → ( 𝑥 ∈ 𝑇 → 𝑥 = 0 ) ) ) |
| 70 | 69 | impcomd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) ) → 𝑥 = 0 ) ) |
| 71 | elin | ⊢ ( 𝑥 ∈ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) ↔ ( 𝑥 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) ) ) | |
| 72 | velsn | ⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 73 | 70 71 72 | 3imtr4g | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) → 𝑥 ∈ { 0 } ) ) |
| 74 | 73 | ssrdv | ⊢ ( 𝜑 → ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) ⊆ { 0 } ) |
| 75 | 5 | subg0cl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑇 ) |
| 76 | 3 75 | syl | ⊢ ( 𝜑 → 0 ∈ 𝑇 ) |
| 77 | 1 | lsmub1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| 78 | 2 4 77 | syl2anc | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| 79 | 5 | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑆 ) |
| 80 | 2 79 | syl | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 81 | 78 80 | sseldd | ⊢ ( 𝜑 → 0 ∈ ( 𝑆 ⊕ 𝑈 ) ) |
| 82 | 76 81 | elind | ⊢ ( 𝜑 → 0 ∈ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) ) |
| 83 | 82 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) ) |
| 84 | 74 83 | eqssd | ⊢ ( 𝜑 → ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ) |