This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a pre-Hilbert space whose double orthocomplement has a projection decomposition is a closed subspace. This is the core of the proof that a topologically closed subspace is algebraically closed in a Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| lsmcss.j | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lsmcss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| lsmcss.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| lsmcss.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | ||
| lsmcss.2 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑉 ) | ||
| lsmcss.3 | ⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( 𝑆 ⊕ ( ⊥ ‘ 𝑆 ) ) ) | ||
| Assertion | lsmcss | ⊢ ( 𝜑 → 𝑆 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 2 | lsmcss.j | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | lsmcss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 4 | lsmcss.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 5 | lsmcss.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | |
| 6 | lsmcss.2 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑉 ) | |
| 7 | lsmcss.3 | ⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( 𝑆 ⊕ ( ⊥ ‘ 𝑆 ) ) ) | |
| 8 | 7 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑆 ⊕ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 9 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 10 | 5 9 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 11 | 2 3 | ocvss | ⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
| 12 | 11 | a1i | ⊢ ( 𝜑 → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 14 | 2 13 4 | lsmelvalx | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑆 ⊆ 𝑉 ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( 𝑥 ∈ ( 𝑆 ⊕ ( ⊥ ‘ 𝑆 ) ) ↔ ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 15 | 10 6 12 14 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ⊕ ( ⊥ ‘ 𝑆 ) ) ↔ ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 16 | 8 15 | sylibd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 17 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → 𝑊 ∈ PreHil ) |
| 18 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → 𝑆 ⊆ 𝑉 ) |
| 19 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → 𝑦 ∈ 𝑆 ) | |
| 20 | 18 19 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → 𝑦 ∈ 𝑉 ) |
| 21 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) | |
| 22 | 11 21 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → 𝑧 ∈ 𝑉 ) |
| 23 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 24 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 25 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 26 | 23 24 2 13 25 | ipdir | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 27 | 17 20 22 22 26 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 28 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 29 | 2 24 23 28 3 | ocvi | ⊢ ( ( 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 30 | 21 19 29 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 31 | 23 24 2 28 | iporthcom | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑧 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 32 | 17 22 20 31 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 33 | 30 32 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
| 35 | 17 9 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → 𝑊 ∈ LMod ) |
| 36 | 23 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 37 | 35 36 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 38 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 39 | 23 24 2 38 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑧 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 40 | 17 22 22 39 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 41 | 38 25 28 | grplid | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 42 | 37 40 41 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 43 | 27 34 42 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
| 44 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) | |
| 45 | 2 24 23 28 3 | ocvi | ⊢ ( ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 46 | 44 21 45 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 47 | 43 46 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 48 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 49 | 23 24 2 28 48 | ipeq0 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑧 = ( 0g ‘ 𝑊 ) ) ) |
| 50 | 17 22 49 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑧 = ( 0g ‘ 𝑊 ) ) ) |
| 51 | 47 50 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → 𝑧 = ( 0g ‘ 𝑊 ) ) |
| 52 | 51 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 53 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 54 | 10 53 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → 𝑊 ∈ Grp ) |
| 56 | 2 13 48 | grprid | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑦 ) |
| 57 | 55 20 56 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑦 ) |
| 58 | 52 57 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = 𝑦 ) |
| 59 | 58 19 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑆 ) |
| 60 | 59 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑆 ) ) |
| 61 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ↔ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) | |
| 62 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑥 ∈ 𝑆 ↔ ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑆 ) ) | |
| 63 | 61 62 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) ↔ ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 64 | 60 63 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) ) ) |
| 65 | 64 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑆 ∃ 𝑧 ∈ ( ⊥ ‘ 𝑆 ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) ) ) |
| 66 | 16 65 | syld | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) ) ) |
| 67 | 66 | pm2.43d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) ) |
| 68 | 67 | ssrdv | ⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) |
| 69 | 2 1 3 | iscss2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑆 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |
| 70 | 5 6 69 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |
| 71 | 68 70 | mpbird | ⊢ ( 𝜑 → 𝑆 ∈ 𝐶 ) |