This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ip0l.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | ||
| Assertion | iporthcom | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 𝑍 ↔ ( 𝐵 , 𝐴 ) = 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ip0l.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | |
| 5 | 1 | phlsrng | ⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 ∈ *-Ring ) |
| 7 | eqid | ⊢ ( *rf ‘ 𝐹 ) = ( *rf ‘ 𝐹 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 9 | 7 8 | srngf1o | ⊢ ( 𝐹 ∈ *-Ring → ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1-onto→ ( Base ‘ 𝐹 ) ) |
| 10 | f1of1 | ⊢ ( ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1-onto→ ( Base ‘ 𝐹 ) → ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1→ ( Base ‘ 𝐹 ) ) | |
| 11 | 6 9 10 | 3syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1→ ( Base ‘ 𝐹 ) ) |
| 12 | 1 2 3 8 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ 𝐹 ) ) |
| 13 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 15 | 1 8 4 | lmod0cl | ⊢ ( 𝑊 ∈ LMod → 𝑍 ∈ ( Base ‘ 𝐹 ) ) |
| 16 | 14 15 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑍 ∈ ( Base ‘ 𝐹 ) ) |
| 17 | f1fveq | ⊢ ( ( ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1→ ( Base ‘ 𝐹 ) ∧ ( ( 𝐴 , 𝐵 ) ∈ ( Base ‘ 𝐹 ) ∧ 𝑍 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) ↔ ( 𝐴 , 𝐵 ) = 𝑍 ) ) | |
| 18 | 11 12 16 17 | syl12anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) ↔ ( 𝐴 , 𝐵 ) = 𝑍 ) ) |
| 19 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 20 | 8 19 7 | stafval | ⊢ ( ( 𝐴 , 𝐵 ) ∈ ( Base ‘ 𝐹 ) → ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) ) |
| 21 | 12 20 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) ) |
| 22 | 1 2 3 19 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
| 23 | 21 22 | eqtrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
| 24 | 8 19 7 | stafval | ⊢ ( 𝑍 ∈ ( Base ‘ 𝐹 ) → ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) ) |
| 25 | 16 24 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) ) |
| 26 | 19 4 | srng0 | ⊢ ( 𝐹 ∈ *-Ring → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
| 27 | 6 26 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
| 28 | 25 27 | eqtrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
| 29 | 23 28 | eqeq12d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) ↔ ( 𝐵 , 𝐴 ) = 𝑍 ) ) |
| 30 | 18 29 | bitr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 𝑍 ↔ ( 𝐵 , 𝐴 ) = 𝑍 ) ) |