This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| cssss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| ocvcss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | iscss2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑆 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | cssss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | ocvcss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 4 | 3 2 | iscss | ⊢ ( 𝑊 ∈ PreHil → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 6 | 1 3 | ocvocv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 7 | eqss | ⊢ ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) | |
| 8 | 7 | baib | ⊢ ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) → ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |
| 9 | 6 8 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |
| 10 | 5 9 | bitrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑆 ∈ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝑆 ) ) |