This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one isnot usually an algebraic closure system df-acs : consider the Hilbert space of sequences NN --> RR with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel . (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssmre.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| cssmre.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| Assertion | cssmre | ⊢ ( 𝑊 ∈ PreHil → 𝐶 ∈ ( Moore ‘ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssmre.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | cssmre.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | 1 2 | cssss | ⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ⊆ 𝑉 ) |
| 4 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝑉 ↔ 𝑥 ⊆ 𝑉 ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉 ) |
| 6 | 5 | a1i | ⊢ ( 𝑊 ∈ PreHil → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉 ) ) |
| 7 | 6 | ssrdv | ⊢ ( 𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉 ) |
| 8 | 1 2 | css1 | ⊢ ( 𝑊 ∈ PreHil → 𝑉 ∈ 𝐶 ) |
| 9 | intss1 | ⊢ ( 𝑧 ∈ 𝑥 → ∩ 𝑥 ⊆ 𝑧 ) | |
| 10 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
| 11 | 10 | ocv2ss | ⊢ ( ∩ 𝑥 ⊆ 𝑧 → ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) |
| 12 | 10 | ocv2ss | ⊢ ( ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 13 | 9 11 12 | 3syl | ⊢ ( 𝑧 ∈ 𝑥 → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 14 | 13 | ad2antll | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 15 | simprl | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ) | |
| 16 | 14 15 | sseldd | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 17 | simpl2 | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑥 ⊆ 𝐶 ) | |
| 18 | simprr | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) | |
| 19 | 17 18 | sseldd | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑧 ∈ 𝐶 ) |
| 20 | 10 2 | cssi | ⊢ ( 𝑧 ∈ 𝐶 → 𝑧 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 21 | 19 20 | syl | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑧 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) |
| 22 | 16 21 | eleqtrrd | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑦 ∈ 𝑧 ) |
| 23 | 22 | expr | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ) → ( 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) |
| 24 | 23 | alrimiv | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) |
| 25 | vex | ⊢ 𝑦 ∈ V | |
| 26 | 25 | elint | ⊢ ( 𝑦 ∈ ∩ 𝑥 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) |
| 27 | 24 26 | sylibr | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ) → 𝑦 ∈ ∩ 𝑥 ) |
| 28 | 27 | ex | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) → 𝑦 ∈ ∩ 𝑥 ) ) |
| 29 | 28 | ssrdv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ∩ 𝑥 ) |
| 30 | simp1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → 𝑊 ∈ PreHil ) | |
| 31 | intssuni | ⊢ ( 𝑥 ≠ ∅ → ∩ 𝑥 ⊆ ∪ 𝑥 ) | |
| 32 | 31 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝑥 ) |
| 33 | simp2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝐶 ) | |
| 34 | 7 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → 𝐶 ⊆ 𝒫 𝑉 ) |
| 35 | 33 34 | sstrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝒫 𝑉 ) |
| 36 | sspwuni | ⊢ ( 𝑥 ⊆ 𝒫 𝑉 ↔ ∪ 𝑥 ⊆ 𝑉 ) | |
| 37 | 35 36 | sylib | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∪ 𝑥 ⊆ 𝑉 ) |
| 38 | 32 37 | sstrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ 𝑉 ) |
| 39 | 1 2 10 | iscss2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ∩ 𝑥 ⊆ 𝑉 ) → ( ∩ 𝑥 ∈ 𝐶 ↔ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ∩ 𝑥 ) ) |
| 40 | 30 38 39 | syl2anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ∩ 𝑥 ∈ 𝐶 ↔ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩ 𝑥 ) ) ⊆ ∩ 𝑥 ) ) |
| 41 | 29 40 | mpbird | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
| 42 | 7 8 41 | ismred | ⊢ ( 𝑊 ∈ PreHil → 𝐶 ∈ ( Moore ‘ 𝑉 ) ) |