This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmspsn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsmspsn.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lsmspsn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lsmspsn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lsmspsn.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lsmspsn.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| lsmspsn.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsmspsn.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lsmspsn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lsmspsn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lsmspsn | ⊢ ( 𝜑 → ( 𝑈 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmspsn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsmspsn.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lsmspsn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lsmspsn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lsmspsn.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lsmspsn.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 7 | lsmspsn.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 8 | lsmspsn.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 9 | lsmspsn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 10 | lsmspsn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 11 | 1 7 | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 12 | 8 9 11 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 13 | 1 7 | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 14 | 8 10 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 | 2 6 | lsmelval | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑈 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
| 16 | 12 14 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑈 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
| 17 | 3 4 1 5 7 | ellspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ) ) |
| 18 | 8 9 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ) ) |
| 19 | 3 4 1 5 7 | ellspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) |
| 20 | 8 10 19 | syl2anc | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) |
| 21 | 18 20 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) ) |
| 22 | 21 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) |
| 23 | 22 | biantrurd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑈 = ( 𝑣 + 𝑤 ) ↔ ( ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) ) |
| 24 | r19.41v | ⊢ ( ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ( ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) | |
| 25 | 24 | rexbii | ⊢ ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ∃ 𝑗 ∈ 𝐾 ( ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
| 26 | r19.41v | ⊢ ( ∃ 𝑗 ∈ 𝐾 ( ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) | |
| 27 | reeanv | ⊢ ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ↔ ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) | |
| 28 | 27 | anbi1i | ⊢ ( ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ( ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
| 29 | 25 26 28 | 3bitrri | ⊢ ( ( ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
| 30 | 23 29 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑈 = ( 𝑣 + 𝑤 ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) ) |
| 31 | 30 | 2rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) 𝑈 = ( 𝑣 + 𝑤 ) ↔ ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) ) |
| 32 | rexrot4 | ⊢ ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) | |
| 33 | 31 32 | bitrdi | ⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) 𝑈 = ( 𝑣 + 𝑤 ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) ) |
| 34 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑊 ∈ LMod ) |
| 35 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑗 ∈ 𝐾 ) | |
| 36 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑋 ∈ 𝑉 ) |
| 37 | 1 5 3 4 7 34 35 36 | ellspsni | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑗 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 38 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑘 ∈ 𝐾 ) | |
| 39 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑌 ∈ 𝑉 ) |
| 40 | 1 5 3 4 7 34 38 39 | ellspsni | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑘 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 41 | oveq1 | ⊢ ( 𝑣 = ( 𝑗 · 𝑋 ) → ( 𝑣 + 𝑤 ) = ( ( 𝑗 · 𝑋 ) + 𝑤 ) ) | |
| 42 | 41 | eqeq2d | ⊢ ( 𝑣 = ( 𝑗 · 𝑋 ) → ( 𝑈 = ( 𝑣 + 𝑤 ) ↔ 𝑈 = ( ( 𝑗 · 𝑋 ) + 𝑤 ) ) ) |
| 43 | oveq2 | ⊢ ( 𝑤 = ( 𝑘 · 𝑌 ) → ( ( 𝑗 · 𝑋 ) + 𝑤 ) = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) | |
| 44 | 43 | eqeq2d | ⊢ ( 𝑤 = ( 𝑘 · 𝑌 ) → ( 𝑈 = ( ( 𝑗 · 𝑋 ) + 𝑤 ) ↔ 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |
| 45 | 42 44 | ceqsrex2v | ⊢ ( ( ( 𝑗 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑘 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) → ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |
| 46 | 37 40 45 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |
| 47 | 46 | 2rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |
| 48 | 16 33 47 | 3bitrd | ⊢ ( 𝜑 → ( 𝑈 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |