This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two subgroups is a subgroup. (Contributed by NM, 4-Feb-2014) (Proof shortened by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmcom.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | lsmsubg2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcom.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | simp2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | simp3 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 5 | simp1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Abel ) | |
| 6 | 4 5 2 3 | ablcntzd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ 𝑈 ) ) |
| 7 | 1 4 | lsmsubg | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 8 | 2 3 6 7 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |