This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplying a number by _i increases the logarithm of the number by _i _pi / 2 . (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logimul | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( log ` ( _i x. A ) ) = ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( log ` A ) e. CC ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 5 | 4 | recni | |- ( _pi / 2 ) e. CC |
| 6 | 3 5 | mulcli | |- ( _i x. ( _pi / 2 ) ) e. CC |
| 7 | efadd | |- ( ( ( log ` A ) e. CC /\ ( _i x. ( _pi / 2 ) ) e. CC ) -> ( exp ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) = ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. ( _pi / 2 ) ) ) ) ) |
|
| 8 | 2 6 7 | sylancl | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( exp ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) = ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. ( _pi / 2 ) ) ) ) ) |
| 9 | eflog | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
|
| 10 | 9 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( exp ` ( log ` A ) ) = A ) |
| 11 | efhalfpi | |- ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i |
|
| 12 | 11 | a1i | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i ) |
| 13 | 10 12 | oveq12d | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( ( exp ` ( log ` A ) ) x. ( exp ` ( _i x. ( _pi / 2 ) ) ) ) = ( A x. _i ) ) |
| 14 | simp1 | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> A e. CC ) |
|
| 15 | mulcom | |- ( ( A e. CC /\ _i e. CC ) -> ( A x. _i ) = ( _i x. A ) ) |
|
| 16 | 14 3 15 | sylancl | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( A x. _i ) = ( _i x. A ) ) |
| 17 | 8 13 16 | 3eqtrd | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( exp ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) = ( _i x. A ) ) |
| 18 | 17 | fveq2d | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( log ` ( exp ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) ) = ( log ` ( _i x. A ) ) ) |
| 19 | addcl | |- ( ( ( log ` A ) e. CC /\ ( _i x. ( _pi / 2 ) ) e. CC ) -> ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) e. CC ) |
|
| 20 | 2 6 19 | sylancl | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) e. CC ) |
| 21 | pire | |- _pi e. RR |
|
| 22 | 21 | renegcli | |- -u _pi e. RR |
| 23 | 22 | a1i | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> -u _pi e. RR ) |
| 24 | 2 | imcld | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 25 | readdcl | |- ( ( ( Im ` ( log ` A ) ) e. RR /\ ( _pi / 2 ) e. RR ) -> ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) e. RR ) |
|
| 26 | 24 4 25 | sylancl | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) e. RR ) |
| 27 | logimcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
|
| 28 | 27 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
| 29 | 28 | simpld | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> -u _pi < ( Im ` ( log ` A ) ) ) |
| 30 | pirp | |- _pi e. RR+ |
|
| 31 | rphalfcl | |- ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) |
|
| 32 | 30 31 | ax-mp | |- ( _pi / 2 ) e. RR+ |
| 33 | ltaddrp | |- ( ( ( Im ` ( log ` A ) ) e. RR /\ ( _pi / 2 ) e. RR+ ) -> ( Im ` ( log ` A ) ) < ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) ) |
|
| 34 | 24 32 33 | sylancl | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( Im ` ( log ` A ) ) < ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) ) |
| 35 | 23 24 26 29 34 | lttrd | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> -u _pi < ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) ) |
| 36 | imadd | |- ( ( ( log ` A ) e. CC /\ ( _i x. ( _pi / 2 ) ) e. CC ) -> ( Im ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) = ( ( Im ` ( log ` A ) ) + ( Im ` ( _i x. ( _pi / 2 ) ) ) ) ) |
|
| 37 | 2 6 36 | sylancl | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( Im ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) = ( ( Im ` ( log ` A ) ) + ( Im ` ( _i x. ( _pi / 2 ) ) ) ) ) |
| 38 | reim | |- ( ( _pi / 2 ) e. CC -> ( Re ` ( _pi / 2 ) ) = ( Im ` ( _i x. ( _pi / 2 ) ) ) ) |
|
| 39 | 5 38 | ax-mp | |- ( Re ` ( _pi / 2 ) ) = ( Im ` ( _i x. ( _pi / 2 ) ) ) |
| 40 | rere | |- ( ( _pi / 2 ) e. RR -> ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) ) |
|
| 41 | 4 40 | ax-mp | |- ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) |
| 42 | 39 41 | eqtr3i | |- ( Im ` ( _i x. ( _pi / 2 ) ) ) = ( _pi / 2 ) |
| 43 | 42 | oveq2i | |- ( ( Im ` ( log ` A ) ) + ( Im ` ( _i x. ( _pi / 2 ) ) ) ) = ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) |
| 44 | 37 43 | eqtrdi | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( Im ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) = ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) ) |
| 45 | 35 44 | breqtrrd | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> -u _pi < ( Im ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) ) |
| 46 | argrege0 | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( Im ` ( log ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 47 | 4 | renegcli | |- -u ( _pi / 2 ) e. RR |
| 48 | 47 4 | elicc2i | |- ( ( Im ` ( log ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( ( Im ` ( log ` A ) ) e. RR /\ -u ( _pi / 2 ) <_ ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ ( _pi / 2 ) ) ) |
| 49 | 48 | simp3bi | |- ( ( Im ` ( log ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( Im ` ( log ` A ) ) <_ ( _pi / 2 ) ) |
| 50 | 46 49 | syl | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( Im ` ( log ` A ) ) <_ ( _pi / 2 ) ) |
| 51 | 21 | recni | |- _pi e. CC |
| 52 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 53 | 51 5 5 52 | subaddrii | |- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
| 54 | 50 53 | breqtrrdi | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( Im ` ( log ` A ) ) <_ ( _pi - ( _pi / 2 ) ) ) |
| 55 | 4 | a1i | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( _pi / 2 ) e. RR ) |
| 56 | 21 | a1i | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> _pi e. RR ) |
| 57 | leaddsub | |- ( ( ( Im ` ( log ` A ) ) e. RR /\ ( _pi / 2 ) e. RR /\ _pi e. RR ) -> ( ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) <_ _pi <-> ( Im ` ( log ` A ) ) <_ ( _pi - ( _pi / 2 ) ) ) ) |
|
| 58 | 24 55 56 57 | syl3anc | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) <_ _pi <-> ( Im ` ( log ` A ) ) <_ ( _pi - ( _pi / 2 ) ) ) ) |
| 59 | 54 58 | mpbird | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( ( Im ` ( log ` A ) ) + ( _pi / 2 ) ) <_ _pi ) |
| 60 | 44 59 | eqbrtrd | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( Im ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) <_ _pi ) |
| 61 | ellogrn | |- ( ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) e. ran log <-> ( ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) e. CC /\ -u _pi < ( Im ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) /\ ( Im ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) <_ _pi ) ) |
|
| 62 | 20 45 60 61 | syl3anbrc | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) e. ran log ) |
| 63 | logef | |- ( ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) e. ran log -> ( log ` ( exp ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) ) = ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) |
|
| 64 | 62 63 | syl | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( log ` ( exp ` ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) ) = ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) |
| 65 | 18 64 | eqtr3d | |- ( ( A e. CC /\ A =/= 0 /\ 0 <_ ( Re ` A ) ) -> ( log ` ( _i x. A ) ) = ( ( log ` A ) + ( _i x. ( _pi / 2 ) ) ) ) |