This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resttopon2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 2 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 4 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 5 | 4 | ineq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐴 ∩ 𝑋 ) = ( 𝐴 ∩ ∪ 𝐽 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝑋 ) = ( 𝐴 ∩ ∪ 𝐽 ) ) |
| 7 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | restuni2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ∪ 𝐽 ) = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 9 | 1 8 | sylan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ∪ 𝐽 ) = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ 𝑋 ) = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 11 | istopon | ⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑋 ) ) ↔ ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ ( 𝐴 ∩ 𝑋 ) = ∪ ( 𝐽 ↾t 𝐴 ) ) ) | |
| 12 | 3 10 11 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑋 ) ) ) |