This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of Kreyszig p. 51. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvneg1.v | |- V = ( Base ` W ) |
|
| lmodvneg1.n | |- N = ( invg ` W ) |
||
| lmodvneg1.f | |- F = ( Scalar ` W ) |
||
| lmodvneg1.s | |- .x. = ( .s ` W ) |
||
| lmodvneg1.u | |- .1. = ( 1r ` F ) |
||
| lmodvneg1.m | |- M = ( invg ` F ) |
||
| Assertion | lmodvneg1 | |- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) .x. X ) = ( N ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvneg1.v | |- V = ( Base ` W ) |
|
| 2 | lmodvneg1.n | |- N = ( invg ` W ) |
|
| 3 | lmodvneg1.f | |- F = ( Scalar ` W ) |
|
| 4 | lmodvneg1.s | |- .x. = ( .s ` W ) |
|
| 5 | lmodvneg1.u | |- .1. = ( 1r ` F ) |
|
| 6 | lmodvneg1.m | |- M = ( invg ` F ) |
|
| 7 | simpl | |- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
|
| 8 | 3 | lmodfgrp | |- ( W e. LMod -> F e. Grp ) |
| 9 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 10 | 3 9 5 | lmod1cl | |- ( W e. LMod -> .1. e. ( Base ` F ) ) |
| 11 | 10 | adantr | |- ( ( W e. LMod /\ X e. V ) -> .1. e. ( Base ` F ) ) |
| 12 | 9 6 | grpinvcl | |- ( ( F e. Grp /\ .1. e. ( Base ` F ) ) -> ( M ` .1. ) e. ( Base ` F ) ) |
| 13 | 8 11 12 | syl2an2r | |- ( ( W e. LMod /\ X e. V ) -> ( M ` .1. ) e. ( Base ` F ) ) |
| 14 | simpr | |- ( ( W e. LMod /\ X e. V ) -> X e. V ) |
|
| 15 | 1 3 4 9 | lmodvscl | |- ( ( W e. LMod /\ ( M ` .1. ) e. ( Base ` F ) /\ X e. V ) -> ( ( M ` .1. ) .x. X ) e. V ) |
| 16 | 7 13 14 15 | syl3anc | |- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) .x. X ) e. V ) |
| 17 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 18 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 19 | 1 17 18 | lmod0vrid | |- ( ( W e. LMod /\ ( ( M ` .1. ) .x. X ) e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) = ( ( M ` .1. ) .x. X ) ) |
| 20 | 16 19 | syldan | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) = ( ( M ` .1. ) .x. X ) ) |
| 21 | 1 2 | lmodvnegcl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` X ) e. V ) |
| 22 | 1 17 | lmodass | |- ( ( W e. LMod /\ ( ( ( M ` .1. ) .x. X ) e. V /\ X e. V /\ ( N ` X ) e. V ) ) -> ( ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ( +g ` W ) ( N ` X ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) ) |
| 23 | 7 16 14 21 22 | syl13anc | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ( +g ` W ) ( N ` X ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) ) |
| 24 | 1 3 4 5 | lmodvs1 | |- ( ( W e. LMod /\ X e. V ) -> ( .1. .x. X ) = X ) |
| 25 | 24 | oveq2d | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ) |
| 26 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 27 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 28 | 9 26 27 6 | grplinv | |- ( ( F e. Grp /\ .1. e. ( Base ` F ) ) -> ( ( M ` .1. ) ( +g ` F ) .1. ) = ( 0g ` F ) ) |
| 29 | 8 11 28 | syl2an2r | |- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) ( +g ` F ) .1. ) = ( 0g ` F ) ) |
| 30 | 29 | oveq1d | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) ( +g ` F ) .1. ) .x. X ) = ( ( 0g ` F ) .x. X ) ) |
| 31 | 1 17 3 4 9 26 | lmodvsdir | |- ( ( W e. LMod /\ ( ( M ` .1. ) e. ( Base ` F ) /\ .1. e. ( Base ` F ) /\ X e. V ) ) -> ( ( ( M ` .1. ) ( +g ` F ) .1. ) .x. X ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) |
| 32 | 7 13 11 14 31 | syl13anc | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) ( +g ` F ) .1. ) .x. X ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) |
| 33 | 1 3 4 27 18 | lmod0vs | |- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) |
| 34 | 30 32 33 | 3eqtr3d | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) = ( 0g ` W ) ) |
| 35 | 25 34 | eqtr3d | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) = ( 0g ` W ) ) |
| 36 | 35 | oveq1d | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ( +g ` W ) ( N ` X ) ) = ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) ) |
| 37 | 23 36 | eqtr3d | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) = ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) ) |
| 38 | 1 17 18 2 | lmodvnegid | |- ( ( W e. LMod /\ X e. V ) -> ( X ( +g ` W ) ( N ` X ) ) = ( 0g ` W ) ) |
| 39 | 38 | oveq2d | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) ) |
| 40 | 1 17 18 | lmod0vlid | |- ( ( W e. LMod /\ ( N ` X ) e. V ) -> ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) = ( N ` X ) ) |
| 41 | 21 40 | syldan | |- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) = ( N ` X ) ) |
| 42 | 37 39 41 | 3eqtr3d | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) = ( N ` X ) ) |
| 43 | 20 42 | eqtr3d | |- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) .x. X ) = ( N ` X ) ) |