This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsneg.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| lmodvsneg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvsneg.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvsneg.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | ||
| lmodvsneg.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmodvsneg.m | ⊢ 𝑀 = ( invg ‘ 𝐹 ) | ||
| lmodvsneg.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lmodvsneg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| lmodvsneg.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) | ||
| Assertion | lmodvsneg | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( ( 𝑀 ‘ 𝑅 ) · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsneg.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvsneg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | lmodvsneg.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lmodvsneg.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | |
| 5 | lmodvsneg.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | lmodvsneg.m | ⊢ 𝑀 = ( invg ‘ 𝐹 ) | |
| 7 | lmodvsneg.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 8 | lmodvsneg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | lmodvsneg.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) | |
| 10 | 2 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 11 | 7 10 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 12 | ringgrp | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 14 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 15 | 5 14 | ringidcl | ⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 16 | 11 15 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 17 | 5 6 | grpinvcl | ⊢ ( ( 𝐹 ∈ Grp ∧ ( 1r ‘ 𝐹 ) ∈ 𝐾 ) → ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 18 | 13 16 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 19 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 20 | 1 2 3 5 19 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) ) |
| 21 | 7 18 9 8 20 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) ) |
| 22 | 5 19 14 6 11 9 | ringnegl | ⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) = ( 𝑀 ‘ 𝑅 ) ) |
| 23 | 22 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑀 ‘ 𝑅 ) · 𝑋 ) ) |
| 24 | 1 2 3 5 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 · 𝑋 ) ∈ 𝐵 ) |
| 25 | 7 9 8 24 | syl3anc | ⊢ ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝐵 ) |
| 26 | 1 4 2 3 14 6 | lmodvneg1 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) = ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) ) |
| 27 | 7 25 26 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) = ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) ) |
| 28 | 21 23 27 | 3eqtr3rd | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( ( 𝑀 ‘ 𝑅 ) · 𝑋 ) ) |