This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmima.x | ⊢ 𝑋 = ( LSubSp ‘ 𝑆 ) | |
| lmhmima.y | ⊢ 𝑌 = ( LSubSp ‘ 𝑇 ) | ||
| Assertion | lmhmima | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → ( 𝐹 “ 𝑈 ) ∈ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmima.x | ⊢ 𝑋 = ( LSubSp ‘ 𝑆 ) | |
| 2 | lmhmima.y | ⊢ 𝑌 = ( LSubSp ‘ 𝑇 ) | |
| 3 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 4 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 5 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → 𝑈 ∈ 𝑋 ) | |
| 6 | 1 | lsssubg | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑈 ∈ 𝑋 ) → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 7 | 4 5 6 | syl2an2r | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 8 | ghmima | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ) | |
| 9 | 3 7 8 | syl2an2r | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 12 | 10 11 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 14 | ffn | ⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 16 | 10 1 | lssss | ⊢ ( 𝑈 ∈ 𝑋 → 𝑈 ⊆ ( Base ‘ 𝑆 ) ) |
| 17 | 5 16 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → 𝑈 ⊆ ( Base ‘ 𝑆 ) ) |
| 18 | 15 17 | fvelimabd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → ( 𝑏 ∈ ( 𝐹 “ 𝑈 ) ↔ ∃ 𝑐 ∈ 𝑈 ( 𝐹 ‘ 𝑐 ) = 𝑏 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) → ( 𝑏 ∈ ( 𝐹 “ 𝑈 ) ↔ ∃ 𝑐 ∈ 𝑈 ( 𝐹 ‘ 𝑐 ) = 𝑏 ) ) |
| 20 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 21 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 22 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 23 | 21 22 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 26 | 25 | eleq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) |
| 27 | 26 | biimpa | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 28 | 27 | adantrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 29 | 17 | sselda | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑈 ) → 𝑐 ∈ ( Base ‘ 𝑆 ) ) |
| 30 | 29 | adantrl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → 𝑐 ∈ ( Base ‘ 𝑆 ) ) |
| 31 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 32 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 33 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 34 | 21 31 10 32 33 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑐 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) ) ) |
| 35 | 20 28 30 34 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑐 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) ) ) |
| 36 | 20 12 14 | 3syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 37 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑋 ) | |
| 38 | 37 16 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝑆 ) ) |
| 39 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → 𝑆 ∈ LMod ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → 𝑆 ∈ LMod ) |
| 41 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → 𝑐 ∈ 𝑈 ) | |
| 42 | 21 32 31 1 | lssvscl | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑐 ) ∈ 𝑈 ) |
| 43 | 40 37 28 41 42 | syl22anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑐 ) ∈ 𝑈 ) |
| 44 | fnfvima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝑈 ⊆ ( Base ‘ 𝑆 ) ∧ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑐 ) ∈ 𝑈 ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑐 ) ) ∈ ( 𝐹 “ 𝑈 ) ) | |
| 45 | 36 38 43 44 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑐 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 46 | 35 45 | eqeltrrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑐 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 47 | 46 | anassrs | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ∧ 𝑐 ∈ 𝑈 ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 48 | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑏 → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ) | |
| 49 | 48 | eleq1d | ⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑏 → ( ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑐 ) ) ∈ ( 𝐹 “ 𝑈 ) ↔ ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 50 | 47 49 | syl5ibcom | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ∧ 𝑐 ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑏 → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 51 | 50 | rexlimdva | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) → ( ∃ 𝑐 ∈ 𝑈 ( 𝐹 ‘ 𝑐 ) = 𝑏 → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 52 | 19 51 | sylbid | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) → ( 𝑏 ∈ ( 𝐹 “ 𝑈 ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 53 | 52 | impr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ ( 𝐹 “ 𝑈 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 54 | 53 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∀ 𝑏 ∈ ( 𝐹 “ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 55 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) | |
| 56 | 55 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → 𝑇 ∈ LMod ) |
| 57 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) | |
| 58 | 22 57 11 33 2 | islss4 | ⊢ ( 𝑇 ∈ LMod → ( ( 𝐹 “ 𝑈 ) ∈ 𝑌 ↔ ( ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∀ 𝑏 ∈ ( 𝐹 “ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) |
| 59 | 56 58 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → ( ( 𝐹 “ 𝑈 ) ∈ 𝑌 ↔ ( ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∀ 𝑏 ∈ ( 𝐹 “ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) |
| 60 | 9 54 59 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ) → ( 𝐹 “ 𝑈 ) ∈ 𝑌 ) |