This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmima.x | |- X = ( LSubSp ` S ) |
|
| lmhmima.y | |- Y = ( LSubSp ` T ) |
||
| Assertion | lmhmima | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( F " U ) e. Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmima.x | |- X = ( LSubSp ` S ) |
|
| 2 | lmhmima.y | |- Y = ( LSubSp ` T ) |
|
| 3 | lmghm | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
|
| 4 | lmhmlmod1 | |- ( F e. ( S LMHom T ) -> S e. LMod ) |
|
| 5 | simpr | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> U e. X ) |
|
| 6 | 1 | lsssubg | |- ( ( S e. LMod /\ U e. X ) -> U e. ( SubGrp ` S ) ) |
| 7 | 4 5 6 | syl2an2r | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> U e. ( SubGrp ` S ) ) |
| 8 | ghmima | |- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) ) |
|
| 9 | 3 7 8 | syl2an2r | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( F " U ) e. ( SubGrp ` T ) ) |
| 10 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 11 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 12 | 10 11 | lmhmf | |- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 13 | 12 | adantr | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 14 | ffn | |- ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) |
|
| 15 | 13 14 | syl | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> F Fn ( Base ` S ) ) |
| 16 | 10 1 | lssss | |- ( U e. X -> U C_ ( Base ` S ) ) |
| 17 | 5 16 | syl | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> U C_ ( Base ` S ) ) |
| 18 | 15 17 | fvelimabd | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( b e. ( F " U ) <-> E. c e. U ( F ` c ) = b ) ) |
| 19 | 18 | adantr | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> ( b e. ( F " U ) <-> E. c e. U ( F ` c ) = b ) ) |
| 20 | simpll | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> F e. ( S LMHom T ) ) |
|
| 21 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 22 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 23 | 21 22 | lmhmsca | |- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 24 | 23 | adantr | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 25 | 24 | fveq2d | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` S ) ) ) |
| 26 | 25 | eleq2d | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( a e. ( Base ` ( Scalar ` T ) ) <-> a e. ( Base ` ( Scalar ` S ) ) ) ) |
| 27 | 26 | biimpa | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) |
| 28 | 27 | adantrr | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) |
| 29 | 17 | sselda | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ c e. U ) -> c e. ( Base ` S ) ) |
| 30 | 29 | adantrl | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> c e. ( Base ` S ) ) |
| 31 | eqid | |- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
|
| 32 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 33 | eqid | |- ( .s ` T ) = ( .s ` T ) |
|
| 34 | 21 31 10 32 33 | lmhmlin | |- ( ( F e. ( S LMHom T ) /\ a e. ( Base ` ( Scalar ` S ) ) /\ c e. ( Base ` S ) ) -> ( F ` ( a ( .s ` S ) c ) ) = ( a ( .s ` T ) ( F ` c ) ) ) |
| 35 | 20 28 30 34 | syl3anc | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( F ` ( a ( .s ` S ) c ) ) = ( a ( .s ` T ) ( F ` c ) ) ) |
| 36 | 20 12 14 | 3syl | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> F Fn ( Base ` S ) ) |
| 37 | simplr | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> U e. X ) |
|
| 38 | 37 16 | syl | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> U C_ ( Base ` S ) ) |
| 39 | 4 | adantr | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> S e. LMod ) |
| 40 | 39 | adantr | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> S e. LMod ) |
| 41 | simprr | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> c e. U ) |
|
| 42 | 21 32 31 1 | lssvscl | |- ( ( ( S e. LMod /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ c e. U ) ) -> ( a ( .s ` S ) c ) e. U ) |
| 43 | 40 37 28 41 42 | syl22anc | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( a ( .s ` S ) c ) e. U ) |
| 44 | fnfvima | |- ( ( F Fn ( Base ` S ) /\ U C_ ( Base ` S ) /\ ( a ( .s ` S ) c ) e. U ) -> ( F ` ( a ( .s ` S ) c ) ) e. ( F " U ) ) |
|
| 45 | 36 38 43 44 | syl3anc | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( F ` ( a ( .s ` S ) c ) ) e. ( F " U ) ) |
| 46 | 35 45 | eqeltrrd | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ c e. U ) ) -> ( a ( .s ` T ) ( F ` c ) ) e. ( F " U ) ) |
| 47 | 46 | anassrs | |- ( ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) /\ c e. U ) -> ( a ( .s ` T ) ( F ` c ) ) e. ( F " U ) ) |
| 48 | oveq2 | |- ( ( F ` c ) = b -> ( a ( .s ` T ) ( F ` c ) ) = ( a ( .s ` T ) b ) ) |
|
| 49 | 48 | eleq1d | |- ( ( F ` c ) = b -> ( ( a ( .s ` T ) ( F ` c ) ) e. ( F " U ) <-> ( a ( .s ` T ) b ) e. ( F " U ) ) ) |
| 50 | 47 49 | syl5ibcom | |- ( ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) /\ c e. U ) -> ( ( F ` c ) = b -> ( a ( .s ` T ) b ) e. ( F " U ) ) ) |
| 51 | 50 | rexlimdva | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> ( E. c e. U ( F ` c ) = b -> ( a ( .s ` T ) b ) e. ( F " U ) ) ) |
| 52 | 19 51 | sylbid | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ a e. ( Base ` ( Scalar ` T ) ) ) -> ( b e. ( F " U ) -> ( a ( .s ` T ) b ) e. ( F " U ) ) ) |
| 53 | 52 | impr | |- ( ( ( F e. ( S LMHom T ) /\ U e. X ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ b e. ( F " U ) ) ) -> ( a ( .s ` T ) b ) e. ( F " U ) ) |
| 54 | 53 | ralrimivva | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> A. a e. ( Base ` ( Scalar ` T ) ) A. b e. ( F " U ) ( a ( .s ` T ) b ) e. ( F " U ) ) |
| 55 | lmhmlmod2 | |- ( F e. ( S LMHom T ) -> T e. LMod ) |
|
| 56 | 55 | adantr | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> T e. LMod ) |
| 57 | eqid | |- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
|
| 58 | 22 57 11 33 2 | islss4 | |- ( T e. LMod -> ( ( F " U ) e. Y <-> ( ( F " U ) e. ( SubGrp ` T ) /\ A. a e. ( Base ` ( Scalar ` T ) ) A. b e. ( F " U ) ( a ( .s ` T ) b ) e. ( F " U ) ) ) ) |
| 59 | 56 58 | syl | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( ( F " U ) e. Y <-> ( ( F " U ) e. ( SubGrp ` T ) /\ A. a e. ( Base ` ( Scalar ` T ) ) A. b e. ( F " U ) ( a ( .s ` T ) b ) e. ( F " U ) ) ) ) |
| 60 | 9 54 59 | mpbir2and | |- ( ( F e. ( S LMHom T ) /\ U e. X ) -> ( F " U ) e. Y ) |