This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmhmeql.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) | |
| Assertion | lmhmeql | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmeql.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) | |
| 2 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 3 | lmghm | ⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 4 | ghmeql | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 6 | fveq2 | ⊢ ( 𝑧 = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) | |
| 7 | fveq2 | ⊢ ( 𝑧 = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) | |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝑧 = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) ) |
| 9 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑆 ∈ LMod ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑆 ∈ LMod ) |
| 12 | simplr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | |
| 13 | simprl | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 15 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 16 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 17 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 18 | 14 15 16 17 | lmodvscl | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 19 | 11 12 13 18 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 20 | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) | |
| 21 | 20 | ad2antll | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 22 | simplll | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 23 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 24 | 15 17 14 16 23 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 | 22 12 13 24 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 | simpllr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 27 | 15 17 14 16 23 | lmhmlin | ⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 28 | 26 12 13 27 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 29 | 21 25 28 | 3eqtr4d | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) |
| 30 | 8 19 29 | elrabd | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
| 31 | 30 | expr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 32 | 31 | ralrimiva | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 33 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 34 | 14 33 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 35 | 34 | ffnd | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 36 | 14 33 | lmhmf | ⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 37 | 36 | ffnd | ⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐺 Fn ( Base ‘ 𝑆 ) ) |
| 38 | fndmin | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝐺 Fn ( Base ‘ 𝑆 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) | |
| 39 | 35 37 38 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) |
| 41 | eleq2 | ⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) | |
| 42 | 41 | raleqbi1dv | ⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } → ( ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 43 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 44 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 45 | 43 44 | eqeq12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
| 46 | 45 | ralrab | ⊢ ( ∀ 𝑦 ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) |
| 47 | 42 46 | bitrdi | ⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } → ( ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 48 | 40 47 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ( ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ { 𝑧 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 49 | 32 48 | mpbird | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) |
| 50 | 49 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) |
| 51 | 15 17 14 16 1 | islss4 | ⊢ ( 𝑆 ∈ LMod → ( dom ( 𝐹 ∩ 𝐺 ) ∈ 𝑈 ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) ) ) |
| 52 | 10 51 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( dom ( 𝐹 ∩ 𝐺 ) ∈ 𝑈 ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑦 ∈ dom ( 𝐹 ∩ 𝐺 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) ) ) |
| 53 | 5 50 52 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ 𝑈 ) |