This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmhmeql.u | |- U = ( LSubSp ` S ) |
|
| Assertion | lmhmeql | |- ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> dom ( F i^i G ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmeql.u | |- U = ( LSubSp ` S ) |
|
| 2 | lmghm | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
|
| 3 | lmghm | |- ( G e. ( S LMHom T ) -> G e. ( S GrpHom T ) ) |
|
| 4 | ghmeql | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |
|
| 5 | 2 3 4 | syl2an | |- ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |
| 6 | fveq2 | |- ( z = ( x ( .s ` S ) y ) -> ( F ` z ) = ( F ` ( x ( .s ` S ) y ) ) ) |
|
| 7 | fveq2 | |- ( z = ( x ( .s ` S ) y ) -> ( G ` z ) = ( G ` ( x ( .s ` S ) y ) ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( z = ( x ( .s ` S ) y ) -> ( ( F ` z ) = ( G ` z ) <-> ( F ` ( x ( .s ` S ) y ) ) = ( G ` ( x ( .s ` S ) y ) ) ) ) |
| 9 | lmhmlmod1 | |- ( F e. ( S LMHom T ) -> S e. LMod ) |
|
| 10 | 9 | adantr | |- ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> S e. LMod ) |
| 11 | 10 | ad2antrr | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> S e. LMod ) |
| 12 | simplr | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> x e. ( Base ` ( Scalar ` S ) ) ) |
|
| 13 | simprl | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> y e. ( Base ` S ) ) |
|
| 14 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 15 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 16 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 17 | eqid | |- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
|
| 18 | 14 15 16 17 | lmodvscl | |- ( ( S e. LMod /\ x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) -> ( x ( .s ` S ) y ) e. ( Base ` S ) ) |
| 19 | 11 12 13 18 | syl3anc | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( .s ` S ) y ) e. ( Base ` S ) ) |
| 20 | oveq2 | |- ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` T ) ( F ` y ) ) = ( x ( .s ` T ) ( G ` y ) ) ) |
|
| 21 | 20 | ad2antll | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( .s ` T ) ( F ` y ) ) = ( x ( .s ` T ) ( G ` y ) ) ) |
| 22 | simplll | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> F e. ( S LMHom T ) ) |
|
| 23 | eqid | |- ( .s ` T ) = ( .s ` T ) |
|
| 24 | 15 17 14 16 23 | lmhmlin | |- ( ( F e. ( S LMHom T ) /\ x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( F ` y ) ) ) |
| 25 | 22 12 13 24 | syl3anc | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( F ` y ) ) ) |
| 26 | simpllr | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> G e. ( S LMHom T ) ) |
|
| 27 | 15 17 14 16 23 | lmhmlin | |- ( ( G e. ( S LMHom T ) /\ x e. ( Base ` ( Scalar ` S ) ) /\ y e. ( Base ` S ) ) -> ( G ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( G ` y ) ) ) |
| 28 | 26 12 13 27 | syl3anc | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( G ` ( x ( .s ` S ) y ) ) = ( x ( .s ` T ) ( G ` y ) ) ) |
| 29 | 21 25 28 | 3eqtr4d | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( F ` ( x ( .s ` S ) y ) ) = ( G ` ( x ( .s ` S ) y ) ) ) |
| 30 | 8 19 29 | elrabd | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ ( y e. ( Base ` S ) /\ ( F ` y ) = ( G ` y ) ) ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 31 | 30 | expr | |- ( ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 32 | 31 | ralrimiva | |- ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) -> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 33 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 34 | 14 33 | lmhmf | |- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 35 | 34 | ffnd | |- ( F e. ( S LMHom T ) -> F Fn ( Base ` S ) ) |
| 36 | 14 33 | lmhmf | |- ( G e. ( S LMHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
| 37 | 36 | ffnd | |- ( G e. ( S LMHom T ) -> G Fn ( Base ` S ) ) |
| 38 | fndmin | |- ( ( F Fn ( Base ` S ) /\ G Fn ( Base ` S ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
|
| 39 | 35 37 38 | syl2an | |- ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 40 | 39 | adantr | |- ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) -> dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) |
| 41 | eleq2 | |- ( dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } -> ( ( x ( .s ` S ) y ) e. dom ( F i^i G ) <-> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
|
| 42 | 41 | raleqbi1dv | |- ( dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } -> ( A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) <-> A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 43 | fveq2 | |- ( z = y -> ( F ` z ) = ( F ` y ) ) |
|
| 44 | fveq2 | |- ( z = y -> ( G ` z ) = ( G ` y ) ) |
|
| 45 | 43 44 | eqeq12d | |- ( z = y -> ( ( F ` z ) = ( G ` z ) <-> ( F ` y ) = ( G ` y ) ) ) |
| 46 | 45 | ralrab | |- ( A. y e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } <-> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) |
| 47 | 42 46 | bitrdi | |- ( dom ( F i^i G ) = { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } -> ( A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) <-> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) |
| 48 | 40 47 | syl | |- ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) -> ( A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) <-> A. y e. ( Base ` S ) ( ( F ` y ) = ( G ` y ) -> ( x ( .s ` S ) y ) e. { z e. ( Base ` S ) | ( F ` z ) = ( G ` z ) } ) ) ) |
| 49 | 32 48 | mpbird | |- ( ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) /\ x e. ( Base ` ( Scalar ` S ) ) ) -> A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) ) |
| 50 | 49 | ralrimiva | |- ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> A. x e. ( Base ` ( Scalar ` S ) ) A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) ) |
| 51 | 15 17 14 16 1 | islss4 | |- ( S e. LMod -> ( dom ( F i^i G ) e. U <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ A. x e. ( Base ` ( Scalar ` S ) ) A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) ) ) ) |
| 52 | 10 51 | syl | |- ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> ( dom ( F i^i G ) e. U <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ A. x e. ( Base ` ( Scalar ` S ) ) A. y e. dom ( F i^i G ) ( x ( .s ` S ) y ) e. dom ( F i^i G ) ) ) ) |
| 53 | 5 50 52 | mpbir2and | |- ( ( F e. ( S LMHom T ) /\ G e. ( S LMHom T ) ) -> dom ( F i^i G ) e. U ) |