This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspextmo.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| lspextmo.k | ⊢ 𝐾 = ( LSpan ‘ 𝑆 ) | ||
| Assertion | lspextmo | ⊢ ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) → ∃* 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ( 𝑔 ↾ 𝑋 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspextmo.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | lspextmo.k | ⊢ 𝐾 = ( LSpan ‘ 𝑆 ) | |
| 3 | eqtr3 | ⊢ ( ( ( 𝑔 ↾ 𝑋 ) = 𝐹 ∧ ( ℎ ↾ 𝑋 ) = 𝐹 ) → ( 𝑔 ↾ 𝑋 ) = ( ℎ ↾ 𝑋 ) ) | |
| 4 | inss1 | ⊢ ( 𝑔 ∩ ℎ ) ⊆ 𝑔 | |
| 5 | dmss | ⊢ ( ( 𝑔 ∩ ℎ ) ⊆ 𝑔 → dom ( 𝑔 ∩ ℎ ) ⊆ dom 𝑔 ) | |
| 6 | 4 5 | ax-mp | ⊢ dom ( 𝑔 ∩ ℎ ) ⊆ dom 𝑔 |
| 7 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 8 | 1 7 | lmhmf | ⊢ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 9 | 8 | ad2antrl | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 10 | 9 | ffnd | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → 𝑔 Fn 𝐵 ) |
| 11 | 10 | adantrr | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → 𝑔 Fn 𝐵 ) |
| 12 | 11 | fndmd | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → dom 𝑔 = 𝐵 ) |
| 13 | 6 12 | sseqtrid | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → dom ( 𝑔 ∩ ℎ ) ⊆ 𝐵 ) |
| 14 | simplr | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → ( 𝐾 ‘ 𝑋 ) = 𝐵 ) | |
| 15 | lmhmlmod1 | ⊢ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑆 ∈ LMod ) |
| 17 | 16 | ad2antrl | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → 𝑆 ∈ LMod ) |
| 18 | eqid | ⊢ ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) | |
| 19 | 18 | lmhmeql | ⊢ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) → dom ( 𝑔 ∩ ℎ ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 20 | 19 | ad2antrl | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → dom ( 𝑔 ∩ ℎ ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 21 | simprr | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) | |
| 22 | 18 2 | lspssp | ⊢ ( ( 𝑆 ∈ LMod ∧ dom ( 𝑔 ∩ ℎ ) ∈ ( LSubSp ‘ 𝑆 ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) → ( 𝐾 ‘ 𝑋 ) ⊆ dom ( 𝑔 ∩ ℎ ) ) |
| 23 | 17 20 21 22 | syl3anc | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → ( 𝐾 ‘ 𝑋 ) ⊆ dom ( 𝑔 ∩ ℎ ) ) |
| 24 | 14 23 | eqsstrrd | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → 𝐵 ⊆ dom ( 𝑔 ∩ ℎ ) ) |
| 25 | 13 24 | eqssd | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) → dom ( 𝑔 ∩ ℎ ) = 𝐵 ) |
| 26 | 25 | expr | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → ( 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) → dom ( 𝑔 ∩ ℎ ) = 𝐵 ) ) |
| 27 | simprr | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 28 | 1 7 | lmhmf | ⊢ ( ℎ ∈ ( 𝑆 LMHom 𝑇 ) → ℎ : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 29 | ffn | ⊢ ( ℎ : 𝐵 ⟶ ( Base ‘ 𝑇 ) → ℎ Fn 𝐵 ) | |
| 30 | 27 28 29 | 3syl | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → ℎ Fn 𝐵 ) |
| 31 | simpll | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → 𝑋 ⊆ 𝐵 ) | |
| 32 | fnreseql | ⊢ ( ( 𝑔 Fn 𝐵 ∧ ℎ Fn 𝐵 ∧ 𝑋 ⊆ 𝐵 ) → ( ( 𝑔 ↾ 𝑋 ) = ( ℎ ↾ 𝑋 ) ↔ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) | |
| 33 | 10 30 31 32 | syl3anc | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → ( ( 𝑔 ↾ 𝑋 ) = ( ℎ ↾ 𝑋 ) ↔ 𝑋 ⊆ dom ( 𝑔 ∩ ℎ ) ) ) |
| 34 | fneqeql | ⊢ ( ( 𝑔 Fn 𝐵 ∧ ℎ Fn 𝐵 ) → ( 𝑔 = ℎ ↔ dom ( 𝑔 ∩ ℎ ) = 𝐵 ) ) | |
| 35 | 10 30 34 | syl2anc | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → ( 𝑔 = ℎ ↔ dom ( 𝑔 ∩ ℎ ) = 𝐵 ) ) |
| 36 | 26 33 35 | 3imtr4d | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → ( ( 𝑔 ↾ 𝑋 ) = ( ℎ ↾ 𝑋 ) → 𝑔 = ℎ ) ) |
| 37 | 3 36 | syl5 | ⊢ ( ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) ∧ ( 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ) ) → ( ( ( 𝑔 ↾ 𝑋 ) = 𝐹 ∧ ( ℎ ↾ 𝑋 ) = 𝐹 ) → 𝑔 = ℎ ) ) |
| 38 | 37 | ralrimivva | ⊢ ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) → ∀ 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∀ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ( ( ( 𝑔 ↾ 𝑋 ) = 𝐹 ∧ ( ℎ ↾ 𝑋 ) = 𝐹 ) → 𝑔 = ℎ ) ) |
| 39 | reseq1 | ⊢ ( 𝑔 = ℎ → ( 𝑔 ↾ 𝑋 ) = ( ℎ ↾ 𝑋 ) ) | |
| 40 | 39 | eqeq1d | ⊢ ( 𝑔 = ℎ → ( ( 𝑔 ↾ 𝑋 ) = 𝐹 ↔ ( ℎ ↾ 𝑋 ) = 𝐹 ) ) |
| 41 | 40 | rmo4 | ⊢ ( ∃* 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ( 𝑔 ↾ 𝑋 ) = 𝐹 ↔ ∀ 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ∀ ℎ ∈ ( 𝑆 LMHom 𝑇 ) ( ( ( 𝑔 ↾ 𝑋 ) = 𝐹 ∧ ( ℎ ↾ 𝑋 ) = 𝐹 ) → 𝑔 = ℎ ) ) |
| 42 | 38 41 | sylibr | ⊢ ( ( 𝑋 ⊆ 𝐵 ∧ ( 𝐾 ‘ 𝑋 ) = 𝐵 ) → ∃* 𝑔 ∈ ( 𝑆 LMHom 𝑇 ) ( 𝑔 ↾ 𝑋 ) = 𝐹 ) |