This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmeql | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) | |
| 2 | ghmmhm | ⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) | |
| 3 | mhmeql | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ) |
| 5 | fveq2 | ⊢ ( 𝑦 = ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) ) | |
| 6 | fveq2 | ⊢ ( 𝑦 = ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑦 = ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) ) ) |
| 8 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝑆 ∈ Grp ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → 𝑆 ∈ Grp ) |
| 11 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 13 | eqid | ⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) | |
| 14 | 12 13 | grpinvcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 15 | 10 11 14 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 16 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 18 | eqid | ⊢ ( invg ‘ 𝑇 ) = ( invg ‘ 𝑇 ) | |
| 19 | 12 13 18 | ghminv | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 | 19 | ad2ant2r | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 21 | 12 13 18 | ghminv | ⊢ ( ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 22 | 21 | ad2ant2lr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 23 | 17 20 22 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 24 | 7 15 23 | elrabd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) |
| 25 | 24 | expr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
| 26 | 25 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
| 27 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 28 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 29 | 27 28 | eqeq12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 30 | 29 | ralrab | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
| 31 | 26 30 | sylibr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ∀ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) |
| 32 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 33 | 12 32 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 35 | 34 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 36 | 12 32 | ghmf | ⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 38 | 37 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐺 Fn ( Base ‘ 𝑆 ) ) |
| 39 | fndmin | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝐺 Fn ( Base ‘ 𝑆 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) | |
| 40 | 35 38 39 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) |
| 41 | eleq2 | ⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } → ( ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) | |
| 42 | 41 | raleqbi1dv | ⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } → ( ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
| 43 | 40 42 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
| 44 | 31 43 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) |
| 45 | 13 | issubg3 | ⊢ ( 𝑆 ∈ Grp → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) ) ) |
| 46 | 9 45 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) ) ) |
| 47 | 4 44 46 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |