This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fndmin | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 2 | 1 | biimpi | ⊢ ( 𝐹 Fn 𝐴 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝐹 Fn 𝐴 → 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } ) |
| 5 | dffn5 | ⊢ ( 𝐺 Fn 𝐴 ↔ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 6 | 5 | biimpi | ⊢ ( 𝐺 Fn 𝐴 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 7 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) } | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝐺 Fn 𝐴 → 𝐺 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) } ) |
| 9 | 4 8 | ineqan12d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 ∩ 𝐺 ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) } ) ) |
| 10 | inopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } | |
| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 ∩ 𝐺 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } ) |
| 12 | 11 | dmeqd | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → dom ( 𝐹 ∩ 𝐺 ) = dom { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } ) |
| 13 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 14 | anandi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 15 | 14 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 16 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 17 | eqeq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) | |
| 18 | 16 17 | ceqsexv | ⊢ ( ∃ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 19 | 18 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 20 | 13 15 19 | 3bitr3i | ⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 21 | 20 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) } |
| 22 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } | |
| 23 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) } | |
| 24 | 21 22 23 | 3eqtr4i | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) } |
| 25 | 12 24 | eqtrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) } ) |