This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsupgord | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → sup ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 3 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 4 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 5 | xrletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝑤 ) → 𝐴 ≤ 𝑤 ) ) | |
| 6 | 4 4 5 | ixxss1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) ) |
| 7 | 2 3 6 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) ) |
| 8 | imass2 | ⊢ ( ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) → ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ) | |
| 9 | ssrin | ⊢ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝐴 [,) +∞ ) ) → ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ) |
| 11 | inss2 | ⊢ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* | |
| 12 | supxrcl | ⊢ ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) | |
| 13 | 11 12 | ax-mp | ⊢ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* |
| 14 | xrleid | ⊢ ( sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* → sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 15 | 13 14 | ax-mp | ⊢ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) |
| 16 | supxrleub | ⊢ ( ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ∧ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) → ( sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) | |
| 17 | 11 13 16 | mp2an | ⊢ ( sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 18 | 15 17 | mpbi | ⊢ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) |
| 19 | ssralv | ⊢ ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) → ( ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) → ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) | |
| 20 | 10 18 19 | mpisyl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 21 | inss2 | ⊢ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* | |
| 22 | supxrleub | ⊢ ( ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ∧ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) → ( sup ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) | |
| 23 | 21 13 22 | mp2an | ⊢ ( sup ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 24 | 20 23 | sylibr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → sup ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |