This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| limsupval2.1 | |- ( ph -> F e. V ) |
||
| limsupval2.2 | |- ( ph -> A C_ RR ) |
||
| limsupval2.3 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
||
| Assertion | limsupval2 | |- ( ph -> ( limsup ` F ) = inf ( ( G " A ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 2 | limsupval2.1 | |- ( ph -> F e. V ) |
|
| 3 | limsupval2.2 | |- ( ph -> A C_ RR ) |
|
| 4 | limsupval2.3 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
|
| 5 | 1 | limsupval | |- ( F e. V -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
| 6 | 2 5 | syl | |- ( ph -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
| 7 | imassrn | |- ( G " A ) C_ ran G |
|
| 8 | 1 | limsupgf | |- G : RR --> RR* |
| 9 | frn | |- ( G : RR --> RR* -> ran G C_ RR* ) |
|
| 10 | 8 9 | ax-mp | |- ran G C_ RR* |
| 11 | infxrlb | |- ( ( ran G C_ RR* /\ x e. ran G ) -> inf ( ran G , RR* , < ) <_ x ) |
|
| 12 | 11 | ralrimiva | |- ( ran G C_ RR* -> A. x e. ran G inf ( ran G , RR* , < ) <_ x ) |
| 13 | 10 12 | mp1i | |- ( ph -> A. x e. ran G inf ( ran G , RR* , < ) <_ x ) |
| 14 | ssralv | |- ( ( G " A ) C_ ran G -> ( A. x e. ran G inf ( ran G , RR* , < ) <_ x -> A. x e. ( G " A ) inf ( ran G , RR* , < ) <_ x ) ) |
|
| 15 | 7 13 14 | mpsyl | |- ( ph -> A. x e. ( G " A ) inf ( ran G , RR* , < ) <_ x ) |
| 16 | 7 10 | sstri | |- ( G " A ) C_ RR* |
| 17 | infxrcl | |- ( ran G C_ RR* -> inf ( ran G , RR* , < ) e. RR* ) |
|
| 18 | 10 17 | ax-mp | |- inf ( ran G , RR* , < ) e. RR* |
| 19 | infxrgelb | |- ( ( ( G " A ) C_ RR* /\ inf ( ran G , RR* , < ) e. RR* ) -> ( inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) <-> A. x e. ( G " A ) inf ( ran G , RR* , < ) <_ x ) ) |
|
| 20 | 16 18 19 | mp2an | |- ( inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) <-> A. x e. ( G " A ) inf ( ran G , RR* , < ) <_ x ) |
| 21 | 15 20 | sylibr | |- ( ph -> inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) ) |
| 22 | ressxr | |- RR C_ RR* |
|
| 23 | 3 22 | sstrdi | |- ( ph -> A C_ RR* ) |
| 24 | supxrunb1 | |- ( A C_ RR* -> ( A. n e. RR E. x e. A n <_ x <-> sup ( A , RR* , < ) = +oo ) ) |
|
| 25 | 23 24 | syl | |- ( ph -> ( A. n e. RR E. x e. A n <_ x <-> sup ( A , RR* , < ) = +oo ) ) |
| 26 | 4 25 | mpbird | |- ( ph -> A. n e. RR E. x e. A n <_ x ) |
| 27 | infxrcl | |- ( ( G " A ) C_ RR* -> inf ( ( G " A ) , RR* , < ) e. RR* ) |
|
| 28 | 16 27 | mp1i | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> inf ( ( G " A ) , RR* , < ) e. RR* ) |
| 29 | 3 | sselda | |- ( ( ph /\ x e. A ) -> x e. RR ) |
| 30 | 29 | ad2ant2r | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> x e. RR ) |
| 31 | 8 | ffvelcdmi | |- ( x e. RR -> ( G ` x ) e. RR* ) |
| 32 | 30 31 | syl | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) e. RR* ) |
| 33 | 8 | ffvelcdmi | |- ( n e. RR -> ( G ` n ) e. RR* ) |
| 34 | 33 | ad2antlr | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` n ) e. RR* ) |
| 35 | ffn | |- ( G : RR --> RR* -> G Fn RR ) |
|
| 36 | 8 35 | mp1i | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> G Fn RR ) |
| 37 | 3 | ad2antrr | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> A C_ RR ) |
| 38 | simprl | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> x e. A ) |
|
| 39 | fnfvima | |- ( ( G Fn RR /\ A C_ RR /\ x e. A ) -> ( G ` x ) e. ( G " A ) ) |
|
| 40 | 36 37 38 39 | syl3anc | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) e. ( G " A ) ) |
| 41 | infxrlb | |- ( ( ( G " A ) C_ RR* /\ ( G ` x ) e. ( G " A ) ) -> inf ( ( G " A ) , RR* , < ) <_ ( G ` x ) ) |
|
| 42 | 16 40 41 | sylancr | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> inf ( ( G " A ) , RR* , < ) <_ ( G ` x ) ) |
| 43 | simplr | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> n e. RR ) |
|
| 44 | simprr | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> n <_ x ) |
|
| 45 | limsupgord | |- ( ( n e. RR /\ x e. RR /\ n <_ x ) -> sup ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 46 | 43 30 44 45 | syl3anc | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> sup ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 47 | 1 | limsupgval | |- ( x e. RR -> ( G ` x ) = sup ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 48 | 30 47 | syl | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) = sup ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 49 | 1 | limsupgval | |- ( n e. RR -> ( G ` n ) = sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 50 | 49 | ad2antlr | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` n ) = sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 51 | 46 48 50 | 3brtr4d | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) <_ ( G ` n ) ) |
| 52 | 28 32 34 42 51 | xrletrd | |- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) |
| 53 | 52 | rexlimdvaa | |- ( ( ph /\ n e. RR ) -> ( E. x e. A n <_ x -> inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) ) |
| 54 | 53 | ralimdva | |- ( ph -> ( A. n e. RR E. x e. A n <_ x -> A. n e. RR inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) ) |
| 55 | 26 54 | mpd | |- ( ph -> A. n e. RR inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) |
| 56 | 8 35 | ax-mp | |- G Fn RR |
| 57 | breq2 | |- ( x = ( G ` n ) -> ( inf ( ( G " A ) , RR* , < ) <_ x <-> inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) ) |
|
| 58 | 57 | ralrn | |- ( G Fn RR -> ( A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x <-> A. n e. RR inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) ) |
| 59 | 56 58 | ax-mp | |- ( A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x <-> A. n e. RR inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) |
| 60 | 55 59 | sylibr | |- ( ph -> A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x ) |
| 61 | 16 27 | ax-mp | |- inf ( ( G " A ) , RR* , < ) e. RR* |
| 62 | infxrgelb | |- ( ( ran G C_ RR* /\ inf ( ( G " A ) , RR* , < ) e. RR* ) -> ( inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) <-> A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x ) ) |
|
| 63 | 10 61 62 | mp2an | |- ( inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) <-> A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x ) |
| 64 | 60 63 | sylibr | |- ( ph -> inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) ) |
| 65 | xrletri3 | |- ( ( inf ( ran G , RR* , < ) e. RR* /\ inf ( ( G " A ) , RR* , < ) e. RR* ) -> ( inf ( ran G , RR* , < ) = inf ( ( G " A ) , RR* , < ) <-> ( inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) /\ inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) ) ) ) |
|
| 66 | 18 61 65 | mp2an | |- ( inf ( ran G , RR* , < ) = inf ( ( G " A ) , RR* , < ) <-> ( inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) /\ inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) ) ) |
| 67 | 21 64 66 | sylanbrc | |- ( ph -> inf ( ran G , RR* , < ) = inf ( ( G " A ) , RR* , < ) ) |
| 68 | 6 67 | eqtrd | |- ( ph -> ( limsup ` F ) = inf ( ( G " A ) , RR* , < ) ) |