This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The superior limit of an infinite sequence F of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of F . Definition 12-4.1 of Gleason p. 175. (Contributed by NM, 26-Oct-2005) (Revised by AV, 12-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| Assertion | limsupval | ⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 2 | elex | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) | |
| 3 | imaeq1 | ⊢ ( 𝑥 = 𝐹 → ( 𝑥 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) | |
| 4 | 3 | ineq1d | ⊢ ( 𝑥 = 𝐹 → ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
| 5 | 4 | supeq1d | ⊢ ( 𝑥 = 𝐹 → sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 6 | 5 | mpteq2dv | ⊢ ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑥 = 𝐹 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = 𝐺 ) |
| 8 | 7 | rneqd | ⊢ ( 𝑥 = 𝐹 → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran 𝐺 ) |
| 9 | 8 | infeq1d | ⊢ ( 𝑥 = 𝐹 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| 10 | df-limsup | ⊢ lim sup = ( 𝑥 ∈ V ↦ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) | |
| 11 | xrltso | ⊢ < Or ℝ* | |
| 12 | 11 | infex | ⊢ inf ( ran 𝐺 , ℝ* , < ) ∈ V |
| 13 | 9 10 12 | fvmpt | ⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| 14 | 2 13 | syl | ⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |