This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limensuci.1 | ⊢ Lim 𝐴 | |
| Assertion | limensuci | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limensuci.1 | ⊢ Lim 𝐴 | |
| 2 | 1 | limenpsi | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ ( 𝐴 ∖ { ∅ } ) ) |
| 3 | 2 | ensymd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ { ∅ } ) ≈ 𝐴 ) |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | en2sn | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → { ∅ } ≈ { 𝐴 } ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → { ∅ } ≈ { 𝐴 } ) |
| 7 | disjdifr | ⊢ ( ( 𝐴 ∖ { ∅ } ) ∩ { ∅ } ) = ∅ | |
| 8 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 9 | 1 8 | ax-mp | ⊢ Ord 𝐴 |
| 10 | ordirr | ⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) | |
| 11 | 9 10 | ax-mp | ⊢ ¬ 𝐴 ∈ 𝐴 |
| 12 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ 𝐴 ) | |
| 13 | 11 12 | mpbir | ⊢ ( 𝐴 ∩ { 𝐴 } ) = ∅ |
| 14 | unen | ⊢ ( ( ( ( 𝐴 ∖ { ∅ } ) ≈ 𝐴 ∧ { ∅ } ≈ { 𝐴 } ) ∧ ( ( ( 𝐴 ∖ { ∅ } ) ∩ { ∅ } ) = ∅ ∧ ( 𝐴 ∩ { 𝐴 } ) = ∅ ) ) → ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) ≈ ( 𝐴 ∪ { 𝐴 } ) ) | |
| 15 | 7 13 14 | mpanr12 | ⊢ ( ( ( 𝐴 ∖ { ∅ } ) ≈ 𝐴 ∧ { ∅ } ≈ { 𝐴 } ) → ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) ≈ ( 𝐴 ∪ { 𝐴 } ) ) |
| 16 | 3 6 15 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) ≈ ( 𝐴 ∪ { 𝐴 } ) ) |
| 17 | 0ellim | ⊢ ( Lim 𝐴 → ∅ ∈ 𝐴 ) | |
| 18 | 1 17 | ax-mp | ⊢ ∅ ∈ 𝐴 |
| 19 | 4 | snss | ⊢ ( ∅ ∈ 𝐴 ↔ { ∅ } ⊆ 𝐴 ) |
| 20 | 18 19 | mpbi | ⊢ { ∅ } ⊆ 𝐴 |
| 21 | undif | ⊢ ( { ∅ } ⊆ 𝐴 ↔ ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = 𝐴 ) | |
| 22 | 20 21 | mpbi | ⊢ ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = 𝐴 |
| 23 | uncom | ⊢ ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) | |
| 24 | 22 23 | eqtr3i | ⊢ 𝐴 = ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) |
| 25 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 26 | 16 24 25 | 3brtr4g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴 ) |