This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limensuci.1 | |- Lim A |
|
| Assertion | limensuci | |- ( A e. V -> A ~~ suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limensuci.1 | |- Lim A |
|
| 2 | 1 | limenpsi | |- ( A e. V -> A ~~ ( A \ { (/) } ) ) |
| 3 | 2 | ensymd | |- ( A e. V -> ( A \ { (/) } ) ~~ A ) |
| 4 | 0ex | |- (/) e. _V |
|
| 5 | en2sn | |- ( ( (/) e. _V /\ A e. V ) -> { (/) } ~~ { A } ) |
|
| 6 | 4 5 | mpan | |- ( A e. V -> { (/) } ~~ { A } ) |
| 7 | disjdifr | |- ( ( A \ { (/) } ) i^i { (/) } ) = (/) |
|
| 8 | limord | |- ( Lim A -> Ord A ) |
|
| 9 | 1 8 | ax-mp | |- Ord A |
| 10 | ordirr | |- ( Ord A -> -. A e. A ) |
|
| 11 | 9 10 | ax-mp | |- -. A e. A |
| 12 | disjsn | |- ( ( A i^i { A } ) = (/) <-> -. A e. A ) |
|
| 13 | 11 12 | mpbir | |- ( A i^i { A } ) = (/) |
| 14 | unen | |- ( ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) /\ ( ( ( A \ { (/) } ) i^i { (/) } ) = (/) /\ ( A i^i { A } ) = (/) ) ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) |
|
| 15 | 7 13 14 | mpanr12 | |- ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) |
| 16 | 3 6 15 | syl2anc | |- ( A e. V -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) |
| 17 | 0ellim | |- ( Lim A -> (/) e. A ) |
|
| 18 | 1 17 | ax-mp | |- (/) e. A |
| 19 | 4 | snss | |- ( (/) e. A <-> { (/) } C_ A ) |
| 20 | 18 19 | mpbi | |- { (/) } C_ A |
| 21 | undif | |- ( { (/) } C_ A <-> ( { (/) } u. ( A \ { (/) } ) ) = A ) |
|
| 22 | 20 21 | mpbi | |- ( { (/) } u. ( A \ { (/) } ) ) = A |
| 23 | uncom | |- ( { (/) } u. ( A \ { (/) } ) ) = ( ( A \ { (/) } ) u. { (/) } ) |
|
| 24 | 22 23 | eqtr3i | |- A = ( ( A \ { (/) } ) u. { (/) } ) |
| 25 | df-suc | |- suc A = ( A u. { A } ) |
|
| 26 | 16 24 25 | 3brtr4g | |- ( A e. V -> A ~~ suc A ) |