This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limensuc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → 𝐴 ≈ suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( 𝐴 ∈ 𝑉 ↔ if ( Lim 𝐴 , 𝐴 , On ) ∈ 𝑉 ) ) | |
| 2 | id | ⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) ) | |
| 3 | suceq | ⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → suc 𝐴 = suc if ( Lim 𝐴 , 𝐴 , On ) ) | |
| 4 | 2 3 | breq12d | ⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( 𝐴 ≈ suc 𝐴 ↔ if ( Lim 𝐴 , 𝐴 , On ) ≈ suc if ( Lim 𝐴 , 𝐴 , On ) ) ) |
| 5 | 1 4 | imbi12d | ⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( ( 𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴 ) ↔ ( if ( Lim 𝐴 , 𝐴 , On ) ∈ 𝑉 → if ( Lim 𝐴 , 𝐴 , On ) ≈ suc if ( Lim 𝐴 , 𝐴 , On ) ) ) ) |
| 6 | limeq | ⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( Lim 𝐴 ↔ Lim if ( Lim 𝐴 , 𝐴 , On ) ) ) | |
| 7 | limeq | ⊢ ( On = if ( Lim 𝐴 , 𝐴 , On ) → ( Lim On ↔ Lim if ( Lim 𝐴 , 𝐴 , On ) ) ) | |
| 8 | limon | ⊢ Lim On | |
| 9 | 6 7 8 | elimhyp | ⊢ Lim if ( Lim 𝐴 , 𝐴 , On ) |
| 10 | 9 | limensuci | ⊢ ( if ( Lim 𝐴 , 𝐴 , On ) ∈ 𝑉 → if ( Lim 𝐴 , 𝐴 , On ) ≈ suc if ( Lim 𝐴 , 𝐴 , On ) ) |
| 11 | 5 10 | dedth | ⊢ ( Lim 𝐴 → ( 𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴 ) ) |
| 12 | 11 | impcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → 𝐴 ≈ suc 𝐴 ) |