This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the composition of two functions. If the limit of F at A is B and the limit of G at B is C , then the limit of G o. F at A is C . With respect to limcco and limccnp , here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limccog.1 | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( dom 𝐺 ∖ { 𝐵 } ) ) | |
| limccog.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐹 limℂ 𝐴 ) ) | ||
| limccog.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ) | ||
| Assertion | limccog | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccog.1 | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( dom 𝐺 ∖ { 𝐵 } ) ) | |
| 2 | limccog.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐹 limℂ 𝐴 ) ) | |
| 3 | limccog.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ) | |
| 4 | limccl | ⊢ ( 𝐺 limℂ 𝐵 ) ⊆ ℂ | |
| 5 | 4 3 | sselid | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 6 | limcrcl | ⊢ ( 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) → ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ dom 𝐺 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 8 | 7 | simp1d | ⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 9 | 7 | simp2d | ⊢ ( 𝜑 → dom 𝐺 ⊆ ℂ ) |
| 10 | 7 | simp3d | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 11 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 12 | 8 9 10 11 | ellimc2 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 limℂ 𝐵 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 13 | 3 12 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 14 | 13 | simprd | ⊢ ( 𝜑 → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 15 | 14 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 17 | simp1ll | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → 𝜑 ) | |
| 18 | simp2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → 𝑣 ∈ ( TopOpen ‘ ℂfld ) ) | |
| 19 | simp3l | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → 𝐵 ∈ 𝑣 ) | |
| 20 | limcrcl | ⊢ ( 𝐵 ∈ ( 𝐹 limℂ 𝐴 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ ) ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐴 ∈ ℂ ) ) |
| 22 | 21 | simp1d | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 23 | 21 | simp2d | ⊢ ( 𝜑 → dom 𝐹 ⊆ ℂ ) |
| 24 | 21 | simp3d | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 25 | 22 23 24 11 | ellimc2 | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐹 limℂ 𝐴 ) ↔ ( 𝐵 ∈ ℂ ∧ ∀ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) ) ) ) |
| 26 | 2 25 | mpbid | ⊢ ( 𝜑 → ( 𝐵 ∈ ℂ ∧ ∀ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) ) ) |
| 27 | 26 | simprd | ⊢ ( 𝜑 → ∀ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) ) |
| 28 | 27 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝐵 ∈ 𝑣 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) ) |
| 29 | 28 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑣 ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) |
| 30 | 17 18 19 29 | syl21anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) ) |
| 31 | imaco | ⊢ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) = ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) | |
| 32 | 17 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → 𝜑 ) |
| 33 | simpl3r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) | |
| 34 | 33 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) |
| 35 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) | |
| 36 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) | |
| 37 | imassrn | ⊢ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ran 𝐹 | |
| 38 | 37 1 | sstrid | ⊢ ( 𝜑 → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ( dom 𝐺 ∖ { 𝐵 } ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ( dom 𝐺 ∖ { 𝐵 } ) ) |
| 40 | 36 39 | ssind | ⊢ ( ( 𝜑 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) |
| 41 | imass2 | ⊢ ( ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ) |
| 43 | 42 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ) |
| 44 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) | |
| 45 | 43 44 | sstrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ 𝑢 ) |
| 46 | 32 34 35 45 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐺 “ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ) ⊆ 𝑢 ) |
| 47 | 31 46 | eqsstrid | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) |
| 48 | 47 | ex | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 → ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) |
| 49 | 48 | anim2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ∧ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
| 50 | 49 | reximdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ( ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑣 ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
| 51 | 30 50 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) ∧ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ∧ ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) |
| 52 | 51 | rexlimdv3a | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) → ( ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐺 “ ( 𝑣 ∩ ( dom 𝐺 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
| 53 | 16 52 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) ∧ 𝐶 ∈ 𝑢 ) → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) |
| 54 | 53 | ex | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ) → ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
| 55 | 54 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) |
| 56 | 22 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 57 | fdmrn | ⊢ ( Fun 𝐹 ↔ 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) | |
| 58 | 56 57 | sylib | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
| 59 | 1 | difss2d | ⊢ ( 𝜑 → ran 𝐹 ⊆ dom 𝐺 ) |
| 60 | 58 59 | fssd | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ dom 𝐺 ) |
| 61 | fco | ⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝐹 : dom 𝐹 ⟶ dom 𝐺 ) → ( 𝐺 ∘ 𝐹 ) : dom 𝐹 ⟶ ℂ ) | |
| 62 | 8 60 61 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : dom 𝐹 ⟶ ℂ ) |
| 63 | 62 23 24 11 | ellimc2 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐴 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ ( TopOpen ‘ ℂfld ) ( 𝐴 ∈ 𝑤 ∧ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝑤 ∩ ( dom 𝐹 ∖ { 𝐴 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 64 | 5 55 63 | mpbir2and | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐺 ∘ 𝐹 ) limℂ 𝐴 ) ) |