This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the composition of two functions. If the limit of F at A is B and the limit of G at B is C , then the limit of G o. F at A is C . With respect to limcco and limccnp , here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limccog.1 | |- ( ph -> ran F C_ ( dom G \ { B } ) ) |
|
| limccog.2 | |- ( ph -> B e. ( F limCC A ) ) |
||
| limccog.3 | |- ( ph -> C e. ( G limCC B ) ) |
||
| Assertion | limccog | |- ( ph -> C e. ( ( G o. F ) limCC A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccog.1 | |- ( ph -> ran F C_ ( dom G \ { B } ) ) |
|
| 2 | limccog.2 | |- ( ph -> B e. ( F limCC A ) ) |
|
| 3 | limccog.3 | |- ( ph -> C e. ( G limCC B ) ) |
|
| 4 | limccl | |- ( G limCC B ) C_ CC |
|
| 5 | 4 3 | sselid | |- ( ph -> C e. CC ) |
| 6 | limcrcl | |- ( C e. ( G limCC B ) -> ( G : dom G --> CC /\ dom G C_ CC /\ B e. CC ) ) |
|
| 7 | 3 6 | syl | |- ( ph -> ( G : dom G --> CC /\ dom G C_ CC /\ B e. CC ) ) |
| 8 | 7 | simp1d | |- ( ph -> G : dom G --> CC ) |
| 9 | 7 | simp2d | |- ( ph -> dom G C_ CC ) |
| 10 | 7 | simp3d | |- ( ph -> B e. CC ) |
| 11 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 12 | 8 9 10 11 | ellimc2 | |- ( ph -> ( C e. ( G limCC B ) <-> ( C e. CC /\ A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) ) ) ) |
| 13 | 3 12 | mpbid | |- ( ph -> ( C e. CC /\ A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) ) ) |
| 14 | 13 | simprd | |- ( ph -> A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) ) |
| 15 | 14 | r19.21bi | |- ( ( ph /\ u e. ( TopOpen ` CCfld ) ) -> ( C e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) ) |
| 16 | 15 | imp | |- ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) |
| 17 | simp1ll | |- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> ph ) |
|
| 18 | simp2 | |- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> v e. ( TopOpen ` CCfld ) ) |
|
| 19 | simp3l | |- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> B e. v ) |
|
| 20 | limcrcl | |- ( B e. ( F limCC A ) -> ( F : dom F --> CC /\ dom F C_ CC /\ A e. CC ) ) |
|
| 21 | 2 20 | syl | |- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ A e. CC ) ) |
| 22 | 21 | simp1d | |- ( ph -> F : dom F --> CC ) |
| 23 | 21 | simp2d | |- ( ph -> dom F C_ CC ) |
| 24 | 21 | simp3d | |- ( ph -> A e. CC ) |
| 25 | 22 23 24 11 | ellimc2 | |- ( ph -> ( B e. ( F limCC A ) <-> ( B e. CC /\ A. v e. ( TopOpen ` CCfld ) ( B e. v -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) ) ) ) |
| 26 | 2 25 | mpbid | |- ( ph -> ( B e. CC /\ A. v e. ( TopOpen ` CCfld ) ( B e. v -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) ) ) |
| 27 | 26 | simprd | |- ( ph -> A. v e. ( TopOpen ` CCfld ) ( B e. v -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) ) |
| 28 | 27 | r19.21bi | |- ( ( ph /\ v e. ( TopOpen ` CCfld ) ) -> ( B e. v -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) ) |
| 29 | 28 | imp | |- ( ( ( ph /\ v e. ( TopOpen ` CCfld ) ) /\ B e. v ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) |
| 30 | 17 18 19 29 | syl21anc | |- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) |
| 31 | imaco | |- ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) = ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) |
|
| 32 | 17 | ad2antrr | |- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ph ) |
| 33 | simpl3r | |- ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) -> ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) |
|
| 34 | 33 | adantr | |- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) |
| 35 | simpr | |- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) |
|
| 36 | simpr | |- ( ( ph /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) |
|
| 37 | imassrn | |- ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ran F |
|
| 38 | 37 1 | sstrid | |- ( ph -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ( dom G \ { B } ) ) |
| 39 | 38 | adantr | |- ( ( ph /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ( dom G \ { B } ) ) |
| 40 | 36 39 | ssind | |- ( ( ph /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ( v i^i ( dom G \ { B } ) ) ) |
| 41 | imass2 | |- ( ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ( v i^i ( dom G \ { B } ) ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ ( G " ( v i^i ( dom G \ { B } ) ) ) ) |
|
| 42 | 40 41 | syl | |- ( ( ph /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ ( G " ( v i^i ( dom G \ { B } ) ) ) ) |
| 43 | 42 | adantlr | |- ( ( ( ph /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ ( G " ( v i^i ( dom G \ { B } ) ) ) ) |
| 44 | simplr | |- ( ( ( ph /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) |
|
| 45 | 43 44 | sstrd | |- ( ( ( ph /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ u ) |
| 46 | 32 34 35 45 | syl21anc | |- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ u ) |
| 47 | 31 46 | eqsstrid | |- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) |
| 48 | 47 | ex | |- ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) -> ( ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v -> ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) |
| 49 | 48 | anim2d | |- ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) -> ( ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
| 50 | 49 | reximdva | |- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> ( E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
| 51 | 30 50 | mpd | |- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) |
| 52 | 51 | rexlimdv3a | |- ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) -> ( E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
| 53 | 16 52 | mpd | |- ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) |
| 54 | 53 | ex | |- ( ( ph /\ u e. ( TopOpen ` CCfld ) ) -> ( C e. u -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
| 55 | 54 | ralrimiva | |- ( ph -> A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
| 56 | 22 | ffund | |- ( ph -> Fun F ) |
| 57 | fdmrn | |- ( Fun F <-> F : dom F --> ran F ) |
|
| 58 | 56 57 | sylib | |- ( ph -> F : dom F --> ran F ) |
| 59 | 1 | difss2d | |- ( ph -> ran F C_ dom G ) |
| 60 | 58 59 | fssd | |- ( ph -> F : dom F --> dom G ) |
| 61 | fco | |- ( ( G : dom G --> CC /\ F : dom F --> dom G ) -> ( G o. F ) : dom F --> CC ) |
|
| 62 | 8 60 61 | syl2anc | |- ( ph -> ( G o. F ) : dom F --> CC ) |
| 63 | 62 23 24 11 | ellimc2 | |- ( ph -> ( C e. ( ( G o. F ) limCC A ) <-> ( C e. CC /\ A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) ) ) |
| 64 | 5 55 63 | mpbir2and | |- ( ph -> C e. ( ( G o. F ) limCC A ) ) |