This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmgcdeq | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ↔ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdslcm | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) | |
| 2 | 1 | simpld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 4 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 5 | 4 | simprd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 6 | breq1 | ⊢ ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) → ( ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 7 | 5 6 | syl5ibrcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) ) |
| 8 | 7 | imp | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) |
| 9 | lcmcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) | |
| 10 | 9 | nn0zd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℤ ) |
| 11 | dvdstr | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) | |
| 12 | 10 11 | syl3an2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 13 | 12 | 3com12 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 14 | 13 | 3expb | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 15 | 14 | anidms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑁 ) → 𝑀 ∥ 𝑁 ) ) |
| 17 | 3 8 16 | mp2and | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → 𝑀 ∥ 𝑁 ) |
| 18 | absdvdsb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) | |
| 19 | zabscl | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℤ ) | |
| 20 | dvdsabsb | ⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) | |
| 21 | 19 20 | sylan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
| 22 | 18 21 | bitrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
| 24 | 17 23 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) |
| 25 | 1 | simprd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 27 | 4 | simpld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 28 | breq1 | ⊢ ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) → ( ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) ) | |
| 29 | 27 28 | syl5ibrcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) |
| 31 | dvdstr | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) | |
| 32 | 10 31 | syl3an2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 33 | 32 | 3coml | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 34 | 33 | 3expb | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 35 | 34 | anidms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ∧ ( 𝑀 lcm 𝑁 ) ∥ 𝑀 ) → 𝑁 ∥ 𝑀 ) ) |
| 37 | 26 30 36 | mp2and | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → 𝑁 ∥ 𝑀 ) |
| 38 | absdvdsb | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ 𝑀 ) ) | |
| 39 | zabscl | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℤ ) | |
| 40 | dvdsabsb | ⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) | |
| 41 | 39 40 | sylan | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) |
| 42 | 38 41 | bitrd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) |
| 43 | 42 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( 𝑁 ∥ 𝑀 ↔ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) |
| 45 | 37 44 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) |
| 46 | nn0abscl | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℕ0 ) | |
| 47 | nn0abscl | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℕ0 ) | |
| 48 | 46 47 | anim12i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∈ ℕ0 ∧ ( abs ‘ 𝑁 ) ∈ ℕ0 ) ) |
| 49 | dvdseq | ⊢ ( ( ( ( abs ‘ 𝑀 ) ∈ ℕ0 ∧ ( abs ‘ 𝑁 ) ∈ ℕ0 ) ∧ ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) | |
| 50 | 48 49 | sylan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) |
| 51 | 50 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) ∥ ( abs ‘ 𝑀 ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |
| 53 | 24 45 52 | mp2and | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) → ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) |
| 54 | lcmid | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( abs ‘ ( abs ‘ 𝑀 ) ) ) | |
| 55 | 19 54 | syl | ⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( abs ‘ ( abs ‘ 𝑀 ) ) ) |
| 56 | gcdid | ⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) = ( abs ‘ ( abs ‘ 𝑀 ) ) ) | |
| 57 | 19 56 | syl | ⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) = ( abs ‘ ( abs ‘ 𝑀 ) ) ) |
| 58 | 55 57 | eqtr4d | ⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) ) |
| 59 | oveq2 | ⊢ ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) ) | |
| 60 | oveq2 | ⊢ ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) | |
| 61 | 59 60 | eqeq12d | ⊢ ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) → ( ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑀 ) ) ↔ ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) ) |
| 62 | 58 61 | syl5ibcom | ⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) ) |
| 63 | 62 | imp | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) |
| 64 | 63 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) |
| 65 | lcmabs | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) | |
| 66 | gcdabs | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) | |
| 67 | 65 66 | eqeq12d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ↔ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) ) |
| 68 | 67 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) → ( ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ↔ ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) ) |
| 69 | 64 68 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
| 70 | 53 69 | impbida | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 gcd 𝑁 ) ↔ ( abs ‘ 𝑀 ) = ( abs ‘ 𝑁 ) ) ) |