This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdid | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | 0z | ⊢ 0 ∈ ℤ | |
| 3 | gcdaddm | ⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 𝑁 gcd 0 ) = ( 𝑁 gcd ( 0 + ( 1 · 𝑁 ) ) ) ) | |
| 4 | 1 2 3 | mp3an13 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 0 ) = ( 𝑁 gcd ( 0 + ( 1 · 𝑁 ) ) ) ) |
| 5 | gcdid0 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 0 ) = ( abs ‘ 𝑁 ) ) | |
| 6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 7 | mullid | ⊢ ( 𝑁 ∈ ℂ → ( 1 · 𝑁 ) = 𝑁 ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑁 ∈ ℂ → ( 0 + ( 1 · 𝑁 ) ) = ( 0 + 𝑁 ) ) |
| 9 | addlid | ⊢ ( 𝑁 ∈ ℂ → ( 0 + 𝑁 ) = 𝑁 ) | |
| 10 | 8 9 | eqtrd | ⊢ ( 𝑁 ∈ ℂ → ( 0 + ( 1 · 𝑁 ) ) = 𝑁 ) |
| 11 | 6 10 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 0 + ( 1 · 𝑁 ) ) = 𝑁 ) |
| 12 | 11 | oveq2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd ( 0 + ( 1 · 𝑁 ) ) ) = ( 𝑁 gcd 𝑁 ) ) |
| 13 | 4 5 12 | 3eqtr3rd | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |