This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of two integers is the same as that of their absolute values. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmabs | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 2 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 3 | absor | ⊢ ( 𝑀 ∈ ℝ → ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ) | |
| 4 | absor | ⊢ ( 𝑁 ∈ ℝ → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) | |
| 5 | 3 4 | anim12i | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ∧ ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) ) |
| 6 | 1 2 5 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ∧ ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) ) |
| 7 | oveq12 | ⊢ ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) | |
| 8 | 7 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 9 | oveq12 | ⊢ ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( - 𝑀 lcm 𝑁 ) ) | |
| 10 | neglcm | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 lcm 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) | |
| 11 | 9 10 | sylan9eqr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 12 | 11 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 13 | oveq12 | ⊢ ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm - 𝑁 ) ) | |
| 14 | lcmneg | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) | |
| 15 | 13 14 | sylan9eqr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 16 | 15 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 17 | oveq12 | ⊢ ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( - 𝑀 lcm - 𝑁 ) ) | |
| 18 | znegcl | ⊢ ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ ) | |
| 19 | lcmneg | ⊢ ( ( - 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 lcm - 𝑁 ) = ( - 𝑀 lcm 𝑁 ) ) | |
| 20 | 18 19 | sylan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 lcm - 𝑁 ) = ( - 𝑀 lcm 𝑁 ) ) |
| 21 | 20 10 | eqtrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) |
| 22 | 17 21 | sylan9eqr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |
| 23 | 22 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) = - 𝑀 ∧ ( abs ‘ 𝑁 ) = - 𝑁 ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 24 | 8 12 16 23 | ccased | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ∧ ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) ) |
| 25 | 6 24 | mpd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) lcm ( abs ‘ 𝑁 ) ) = ( 𝑀 lcm 𝑁 ) ) |