This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmgcdeq | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) <-> ( abs ` M ) = ( abs ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdslcm | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
|
| 2 | 1 | simpld | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) |
| 3 | 2 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> M || ( M lcm N ) ) |
| 4 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 5 | 4 | simprd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) |
| 6 | breq1 | |- ( ( M lcm N ) = ( M gcd N ) -> ( ( M lcm N ) || N <-> ( M gcd N ) || N ) ) |
|
| 7 | 5 6 | syl5ibrcom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) -> ( M lcm N ) || N ) ) |
| 8 | 7 | imp | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( M lcm N ) || N ) |
| 9 | lcmcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
|
| 10 | 9 | nn0zd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) |
| 11 | dvdstr | |- ( ( M e. ZZ /\ ( M lcm N ) e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
|
| 12 | 10 11 | syl3an2 | |- ( ( M e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 13 | 12 | 3com12 | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 14 | 13 | 3expb | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 15 | 14 | anidms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 16 | 15 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 17 | 3 8 16 | mp2and | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> M || N ) |
| 18 | absdvdsb | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |
|
| 19 | zabscl | |- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
|
| 20 | dvdsabsb | |- ( ( ( abs ` M ) e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
|
| 21 | 19 20 | sylan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
| 22 | 18 21 | bitrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
| 23 | 22 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( M || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
| 24 | 17 23 | mpbid | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( abs ` M ) || ( abs ` N ) ) |
| 25 | 1 | simprd | |- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M lcm N ) ) |
| 26 | 25 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> N || ( M lcm N ) ) |
| 27 | 4 | simpld | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
| 28 | breq1 | |- ( ( M lcm N ) = ( M gcd N ) -> ( ( M lcm N ) || M <-> ( M gcd N ) || M ) ) |
|
| 29 | 27 28 | syl5ibrcom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) -> ( M lcm N ) || M ) ) |
| 30 | 29 | imp | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( M lcm N ) || M ) |
| 31 | dvdstr | |- ( ( N e. ZZ /\ ( M lcm N ) e. ZZ /\ M e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
|
| 32 | 10 31 | syl3an2 | |- ( ( N e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) /\ M e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 33 | 32 | 3coml | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 34 | 33 | 3expb | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 35 | 34 | anidms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 36 | 35 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 37 | 26 30 36 | mp2and | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> N || M ) |
| 38 | absdvdsb | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N || M <-> ( abs ` N ) || M ) ) |
|
| 39 | zabscl | |- ( N e. ZZ -> ( abs ` N ) e. ZZ ) |
|
| 40 | dvdsabsb | |- ( ( ( abs ` N ) e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
|
| 41 | 39 40 | sylan | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
| 42 | 38 41 | bitrd | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
| 43 | 42 | ancoms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
| 44 | 43 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( N || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
| 45 | 37 44 | mpbid | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( abs ` N ) || ( abs ` M ) ) |
| 46 | nn0abscl | |- ( M e. ZZ -> ( abs ` M ) e. NN0 ) |
|
| 47 | nn0abscl | |- ( N e. ZZ -> ( abs ` N ) e. NN0 ) |
|
| 48 | 46 47 | anim12i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) e. NN0 /\ ( abs ` N ) e. NN0 ) ) |
| 49 | dvdseq | |- ( ( ( ( abs ` M ) e. NN0 /\ ( abs ` N ) e. NN0 ) /\ ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) ) -> ( abs ` M ) = ( abs ` N ) ) |
|
| 50 | 48 49 | sylan | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) ) -> ( abs ` M ) = ( abs ` N ) ) |
| 51 | 50 | ex | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) -> ( abs ` M ) = ( abs ` N ) ) ) |
| 52 | 51 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) -> ( abs ` M ) = ( abs ` N ) ) ) |
| 53 | 24 45 52 | mp2and | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( abs ` M ) = ( abs ` N ) ) |
| 54 | lcmid | |- ( ( abs ` M ) e. ZZ -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) |
|
| 55 | 19 54 | syl | |- ( M e. ZZ -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) |
| 56 | gcdid | |- ( ( abs ` M ) e. ZZ -> ( ( abs ` M ) gcd ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) |
|
| 57 | 19 56 | syl | |- ( M e. ZZ -> ( ( abs ` M ) gcd ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) |
| 58 | 55 57 | eqtr4d | |- ( M e. ZZ -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( ( abs ` M ) gcd ( abs ` M ) ) ) |
| 59 | oveq2 | |- ( ( abs ` M ) = ( abs ` N ) -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( ( abs ` M ) lcm ( abs ` N ) ) ) |
|
| 60 | oveq2 | |- ( ( abs ` M ) = ( abs ` N ) -> ( ( abs ` M ) gcd ( abs ` M ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) |
|
| 61 | 59 60 | eqeq12d | |- ( ( abs ` M ) = ( abs ` N ) -> ( ( ( abs ` M ) lcm ( abs ` M ) ) = ( ( abs ` M ) gcd ( abs ` M ) ) <-> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
| 62 | 58 61 | syl5ibcom | |- ( M e. ZZ -> ( ( abs ` M ) = ( abs ` N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
| 63 | 62 | imp | |- ( ( M e. ZZ /\ ( abs ` M ) = ( abs ` N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) |
| 64 | 63 | adantlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) |
| 65 | lcmabs | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
|
| 66 | gcdabs | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
|
| 67 | 65 66 | eqeq12d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) <-> ( M lcm N ) = ( M gcd N ) ) ) |
| 68 | 67 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) <-> ( M lcm N ) = ( M gcd N ) ) ) |
| 69 | 64 68 | mpbid | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( M lcm N ) = ( M gcd N ) ) |
| 70 | 53 69 | impbida | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) <-> ( abs ` M ) = ( abs ` N ) ) ) |