This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmid | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 𝑀 ) = ( abs ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑀 = 0 → ( 𝑀 lcm 𝑀 ) = ( 𝑀 lcm 0 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑀 = 0 → ( abs ‘ 𝑀 ) = ( abs ‘ 0 ) ) | |
| 3 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝑀 = 0 → ( abs ‘ 𝑀 ) = 0 ) |
| 5 | 1 4 | eqeq12d | ⊢ ( 𝑀 = 0 → ( ( 𝑀 lcm 𝑀 ) = ( abs ‘ 𝑀 ) ↔ ( 𝑀 lcm 0 ) = 0 ) ) |
| 6 | lcmcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 lcm 𝑀 ) ∈ ℕ0 ) | |
| 7 | 6 | nn0cnd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 lcm 𝑀 ) ∈ ℂ ) |
| 8 | 7 | anidms | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 𝑀 ) ∈ ℂ ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( 𝑀 lcm 𝑀 ) ∈ ℂ ) |
| 10 | zabscl | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℤ ) | |
| 11 | 10 | zcnd | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℂ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ 𝑀 ) ∈ ℂ ) |
| 13 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → 𝑀 ∈ ℂ ) |
| 15 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → 𝑀 ≠ 0 ) | |
| 16 | 14 15 | absne0d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ 𝑀 ) ≠ 0 ) |
| 17 | lcmgcd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 lcm 𝑀 ) · ( 𝑀 gcd 𝑀 ) ) = ( abs ‘ ( 𝑀 · 𝑀 ) ) ) | |
| 18 | 17 | anidms | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 𝑀 ) · ( 𝑀 gcd 𝑀 ) ) = ( abs ‘ ( 𝑀 · 𝑀 ) ) ) |
| 19 | gcdid | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 𝑀 ) = ( abs ‘ 𝑀 ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 𝑀 ) · ( 𝑀 gcd 𝑀 ) ) = ( ( 𝑀 lcm 𝑀 ) · ( abs ‘ 𝑀 ) ) ) |
| 21 | 13 13 | absmuld | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ ( 𝑀 · 𝑀 ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑀 ) ) ) |
| 22 | 18 20 21 | 3eqtr3d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 𝑀 ) · ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑀 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( ( 𝑀 lcm 𝑀 ) · ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑀 ) ) ) |
| 24 | 9 12 12 16 23 | mulcan2ad | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( 𝑀 lcm 𝑀 ) = ( abs ‘ 𝑀 ) ) |
| 25 | lcm0val | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 0 ) = 0 ) | |
| 26 | 5 24 25 | pm2.61ne | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 𝑀 ) = ( abs ‘ 𝑀 ) ) |